These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 21447556)
1. PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition. Liu L; Qi H; Wang J; Lin H Development; 2011 May; 138(9):1863-73. PubMed ID: 21447556 [TBL] [Abstract][Full Text] [Related]
2. Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains. Zhang Z; Xu J; Koppetsch BS; Wang J; Tipping C; Ma S; Weng Z; Theurkauf WE; Zamore PD Mol Cell; 2011 Nov; 44(4):572-84. PubMed ID: 22099305 [TBL] [Abstract][Full Text] [Related]
3. A novel organelle, the piNG-body, in the nuage of Drosophila male germ cells is associated with piRNA-mediated gene silencing. Kibanov MV; Egorova KS; Ryazansky SS; Sokolova OA; Kotov AA; Olenkina OM; Stolyarenko AD; Gvozdev VA; Olenina LV Mol Biol Cell; 2011 Sep; 22(18):3410-9. PubMed ID: 21775629 [TBL] [Abstract][Full Text] [Related]
4. [The interplay of transposon silencing genes in the Drosophila melanogaster germline]. Sokolova OA; Iakushev EIu; Stoliarenko AD; Mikhaleva EA; Gvozdev VA; Klenov MS Mol Biol (Mosk); 2011; 45(4):633-41. PubMed ID: 21954595 [TBL] [Abstract][Full Text] [Related]
5. The Tudor domain protein Tapas, a homolog of the vertebrate Tdrd7, functions in the piRNA pathway to regulate retrotransposons in germline of Drosophila melanogaster. Patil VS; Anand A; Chakrabarti A; Kai T BMC Biol; 2014 Oct; 12():61. PubMed ID: 25287931 [TBL] [Abstract][Full Text] [Related]
6. Aub and Ago3 Are Recruited to Nuage through Two Mechanisms to Form a Ping-Pong Complex Assembled by Krimper. Webster A; Li S; Hur JK; Wachsmuth M; Bois JS; Perkins EM; Patel DJ; Aravin AA Mol Cell; 2015 Aug; 59(4):564-75. PubMed ID: 26295961 [TBL] [Abstract][Full Text] [Related]
7. Structural insights into the sequence-specific recognition of Piwi by Zhang Y; Liu W; Li R; Gu J; Wu P; Peng C; Ma J; Wu L; Yu Y; Huang Y Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3374-3379. PubMed ID: 29531043 [TBL] [Abstract][Full Text] [Related]
8. AGO3 Slicer activity regulates mitochondria-nuage localization of Armitage and piRNA amplification. Huang H; Li Y; Szulwach KE; Zhang G; Jin P; Chen D J Cell Biol; 2014 Jul; 206(2):217-30. PubMed ID: 25049272 [TBL] [Abstract][Full Text] [Related]
9. Slicing and Binding by Ago3 or Aub Trigger Piwi-Bound piRNA Production by Distinct Mechanisms. Wang W; Han BW; Tipping C; Ge DT; Zhang Z; Weng Z; Zamore PD Mol Cell; 2015 Sep; 59(5):819-30. PubMed ID: 26340424 [TBL] [Abstract][Full Text] [Related]
10. Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Kirino Y; Kim N; de Planell-Saguer M; Khandros E; Chiorean S; Klein PS; Rigoutsos I; Jongens TA; Mourelatos Z Nat Cell Biol; 2009 May; 11(5):652-8. PubMed ID: 19377467 [TBL] [Abstract][Full Text] [Related]
11. The RNA-Binding ATPase, Armitage, Couples piRNA Amplification in Nuage to Phased piRNA Production on Mitochondria. Ge DT; Wang W; Tipping C; Gainetdinov I; Weng Z; Zamore PD Mol Cell; 2019 Jun; 74(5):982-995.e6. PubMed ID: 31076285 [TBL] [Abstract][Full Text] [Related]
12. UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Zhang F; Wang J; Xu J; Zhang Z; Koppetsch BS; Schultz N; Vreven T; Meignin C; Davis I; Zamore PD; Weng Z; Theurkauf WE Cell; 2012 Nov; 151(4):871-884. PubMed ID: 23141543 [TBL] [Abstract][Full Text] [Related]
13. piRNA pathway and the potential processing site, the nuage, in the Drosophila germline. Pek JW; Patil VS; Kai T Dev Growth Differ; 2012 Jan; 54(1):66-77. PubMed ID: 23741748 [TBL] [Abstract][Full Text] [Related]
14. Repression of retroelements in Drosophila germline via piRNA pathway by the Tudor domain protein Tejas. Patil VS; Kai T Curr Biol; 2010 Apr; 20(8):724-30. PubMed ID: 20362446 [TBL] [Abstract][Full Text] [Related]
15. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Li C; Vagin VV; Lee S; Xu J; Ma S; Xi H; Seitz H; Horwich MD; Syrzycka M; Honda BM; Kittler EL; Zapp ML; Klattenhoff C; Schulz N; Theurkauf WE; Weng Z; Zamore PD Cell; 2009 May; 137(3):509-21. PubMed ID: 19395009 [TBL] [Abstract][Full Text] [Related]
16. Vreteno, a gonad-specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila. Zamparini AL; Davis MY; Malone CD; Vieira E; Zavadil J; Sachidanandam R; Hannon GJ; Lehmann R Development; 2011 Sep; 138(18):4039-50. PubMed ID: 21831924 [TBL] [Abstract][Full Text] [Related]
17. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Brennecke J; Aravin AA; Stark A; Dus M; Kellis M; Sachidanandam R; Hannon GJ Cell; 2007 Mar; 128(6):1089-103. PubMed ID: 17346786 [TBL] [Abstract][Full Text] [Related]
18. Multiple roles for Piwi in silencing Drosophila transposons. Rozhkov NV; Hammell M; Hannon GJ Genes Dev; 2013 Feb; 27(4):400-12. PubMed ID: 23392609 [TBL] [Abstract][Full Text] [Related]
19. Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis. Nagao A; Mituyama T; Huang H; Chen D; Siomi MC; Siomi H RNA; 2010 Dec; 16(12):2503-15. PubMed ID: 20980675 [TBL] [Abstract][Full Text] [Related]
20. An in vivo proteomic analysis of the Me31B interactome in Drosophila germ granules. DeHaan H; McCambridge A; Armstrong B; Cruse C; Solanki D; Trinidad JC; Arkov AL; Gao M FEBS Lett; 2017 Nov; 591(21):3536-3547. PubMed ID: 28945271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]