These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 2144782)
1. Protein kinase C activity and substrate (F1/GAP-43) phosphorylation in developing cat visual cortex. Sheu FS; Kasamatsu T; Routtenberg A Brain Res; 1990 Jul; 524(1):144-8. PubMed ID: 2144782 [TBL] [Abstract][Full Text] [Related]
2. Neuron-specific protein F1/GAP-43 shows substrate specificity for the beta subtype of protein kinase C. Sheu FS; Marais RM; Parker PJ; Bazan NG; Routtenberg A Biochem Biophys Res Commun; 1990 Sep; 171(3):1236-43. PubMed ID: 2145833 [TBL] [Abstract][Full Text] [Related]
3. Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes. Schaechter JD; Benowitz LI J Neurosci; 1993 Oct; 13(10):4361-71. PubMed ID: 8410192 [TBL] [Abstract][Full Text] [Related]
4. Direct relation of long-term synaptic potentiation to phosphorylation of membrane protein F1, a substrate for membrane protein kinase C. Lovinger DM; Colley PA; Akers RF; Nelson RB; Routtenberg A Brain Res; 1986 Dec; 399(2):205-11. PubMed ID: 3828760 [TBL] [Abstract][Full Text] [Related]
5. Phosphoprotein F1: purification and characterization of a brain kinase C substrate related to plasticity. Chan SY; Murakami K; Routtenberg A J Neurosci; 1986 Dec; 6(12):3618-27. PubMed ID: 3794793 [TBL] [Abstract][Full Text] [Related]
6. Arachidonic acid, but not sodium nitroprusside, stimulates presynaptic protein kinase C and phosphorylation of GAP-43 in rat hippocampal slices and synaptosomes. Luo Y; Vallano ML J Neurochem; 1995 Apr; 64(4):1808-18. PubMed ID: 7891109 [TBL] [Abstract][Full Text] [Related]
7. Calcium-promoted translocation of protein kinase C to synaptic membranes: relation to the phosphorylation of an endogenous substrate (protein F1) involved in synaptic plasticity. Akers RF; Routtenberg A J Neurosci; 1987 Dec; 7(12):3976-83. PubMed ID: 3121805 [TBL] [Abstract][Full Text] [Related]
8. Protein kinase C activation leading to protein F1 phosphorylation may regulate synaptic plasticity by presynaptic terminal growth. Routtenberg A Behav Neural Biol; 1985 Sep; 44(2):186-200. PubMed ID: 3904711 [TBL] [Abstract][Full Text] [Related]
9. Glial-derived S100b protein selectively inhibits recombinant beta protein kinase C (PKC) phosphorylation of neuron-specific protein F1/GAP43. Sheu FS; Azmitia EC; Marshak DR; Parker PJ; Routtenberg A Brain Res Mol Brain Res; 1994 Jan; 21(1-2):62-6. PubMed ID: 8164523 [TBL] [Abstract][Full Text] [Related]
10. Microencephaly reduces the phosphorylation of the PKC substrate B-50/GAP43 in rat cortex and hippocampus. Di Luca M; Cimino M; De Graan PN; Oestreicher AB; Gispen WH; Cattabeni F Brain Res; 1991 Jan; 538(1):95-101. PubMed ID: 1826859 [TBL] [Abstract][Full Text] [Related]
11. Contrasting patterns of protein phosphorylation in human normal and Alzheimer brain: focus on protein kinase C and protein F1/GAP-43. Florez JC; Nelson RB; Routtenberg A Exp Neurol; 1991 Jun; 112(3):264-72. PubMed ID: 1827625 [TBL] [Abstract][Full Text] [Related]
12. GAP-43 in the cat visual cortex during postnatal development. McIntosh H; Daw N; Parkinson D Vis Neurosci; 1990 Jun; 4(6):585-93. PubMed ID: 2149062 [TBL] [Abstract][Full Text] [Related]
13. NMDA receptor blockade prevents the increase in protein kinase C substrate (protein F1) phosphorylation produced by long-term potentiation. Linden DJ; Wong KL; Sheu FS; Routtenberg A Brain Res; 1988 Aug; 458(1):142-6. PubMed ID: 2905192 [TBL] [Abstract][Full Text] [Related]
14. Selective decline in protein F1 phosphorylation in hippocampus of senescent rats. Barnes CA; Mizumori SJ; Lovinger DM; Sheu FS; Murakami K; Chan SY; Linden DJ; Nelson RB; Routtenberg A Neurobiol Aging; 1988; 9(4):393-8. PubMed ID: 3185858 [TBL] [Abstract][Full Text] [Related]
15. Production and characterization of antibodies against C-terminal peptide of protein F1: a novel phosphorylation at serine 209 of the peptide by protein kinase C. Azzazy HM; Gross GW; Wu MC Neurochem Res; 1994 Mar; 19(3):275-82. PubMed ID: 8177366 [TBL] [Abstract][Full Text] [Related]
16. Differential changes in the phosphorylation of the protein kinase C substrates myristoylated alanine-rich C kinase substrate and growth-associated protein-43/B-50 following Schaffer collateral long-term potentiation and long-term depression. Ramakers GM; McNamara RK; Lenox RH; De Graan PN J Neurochem; 1999 Nov; 73(5):2175-83. PubMed ID: 10537078 [TBL] [Abstract][Full Text] [Related]
17. Parathyroid hormone causes translocation of protein kinase-C from cytosol to membranes in rat osteosarcoma cells. Abou-Samra AB; Jueppner H; Westerberg D; Potts JT; Segre GV Endocrinology; 1989 Mar; 124(3):1107-13. PubMed ID: 2537172 [TBL] [Abstract][Full Text] [Related]
18. Phosphorylation-site mutagenesis of the growth-associated protein GAP-43 modulates its effects on cell spreading and morphology. Widmer F; Caroni P J Cell Biol; 1993 Jan; 120(2):503-12. PubMed ID: 8421062 [TBL] [Abstract][Full Text] [Related]
19. The two major phosphoproteins in growth cones are probably identical to two protein kinase C substrates correlated with persistence of long-term potentiation. Nelson RB; Linden DJ; Hyman C; Pfenninger KH; Routtenberg A J Neurosci; 1989 Feb; 9(2):381-9. PubMed ID: 2918368 [TBL] [Abstract][Full Text] [Related]
20. Synaptic protein phosphorylation changes in animals exposed to neurotoxicants during development. Di Luca M; Caputi A; Cattabeni F Neurotoxicology; 1994; 15(3):525-32. PubMed ID: 7854586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]