These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
800 related articles for article (PubMed ID: 21448086)
1. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Hood MS; Little JP; Tarnopolsky MA; Myslik F; Gibala MJ Med Sci Sports Exerc; 2011 Oct; 43(10):1849-56. PubMed ID: 21448086 [TBL] [Abstract][Full Text] [Related]
2. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. Little JP; Safdar A; Wilkin GP; Tarnopolsky MA; Gibala MJ J Physiol; 2010 Mar; 588(Pt 6):1011-22. PubMed ID: 20100740 [TBL] [Abstract][Full Text] [Related]
3. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. Yeo WK; Paton CD; Garnham AP; Burke LM; Carey AL; Hawley JA J Appl Physiol (1985); 2008 Nov; 105(5):1462-70. PubMed ID: 18772325 [TBL] [Abstract][Full Text] [Related]
4. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. Burgomaster KA; Howarth KR; Phillips SM; Rakobowchuk M; Macdonald MJ; McGee SL; Gibala MJ J Physiol; 2008 Jan; 586(1):151-60. PubMed ID: 17991697 [TBL] [Abstract][Full Text] [Related]
5. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Cochran AJ; Percival ME; Tricarico S; Little JP; Cermak N; Gillen JB; Tarnopolsky MA; Gibala MJ Exp Physiol; 2014 May; 99(5):782-91. PubMed ID: 24532598 [TBL] [Abstract][Full Text] [Related]
6. Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training. Nordsborg NB; Connolly L; Weihe P; Iuliano E; Krustrup P; Saltin B; Mohr M J Appl Physiol (1985); 2015 Jul; 119(2):116-23. PubMed ID: 26023221 [TBL] [Abstract][Full Text] [Related]
7. Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans. Cochran AJ; Little JP; Tarnopolsky MA; Gibala MJ J Appl Physiol (1985); 2010 Mar; 108(3):628-36. PubMed ID: 20056852 [TBL] [Abstract][Full Text] [Related]
8. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Burgomaster KA; Hughes SC; Heigenhauser GJ; Bradwell SN; Gibala MJ J Appl Physiol (1985); 2005 Jun; 98(6):1985-90. PubMed ID: 15705728 [TBL] [Abstract][Full Text] [Related]
9. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Morrison D; Hughes J; Della Gatta PA; Mason S; Lamon S; Russell AP; Wadley GD Free Radic Biol Med; 2015 Dec; 89():852-62. PubMed ID: 26482865 [TBL] [Abstract][Full Text] [Related]
10. PGC-1α transcriptional response and mitochondrial adaptation to acute exercise is maintained in skeletal muscle of sedentary elderly males. Cobley JN; Bartlett JD; Kayani A; Murray SW; Louhelainen J; Donovan T; Waldron S; Gregson W; Burniston JG; Morton JP; Close GL Biogerontology; 2012 Dec; 13(6):621-31. PubMed ID: 23187721 [TBL] [Abstract][Full Text] [Related]
11. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. Burgomaster KA; Heigenhauser GJ; Gibala MJ J Appl Physiol (1985); 2006 Jun; 100(6):2041-7. PubMed ID: 16469933 [TBL] [Abstract][Full Text] [Related]
12. High-intensity interval training increases SIRT1 activity in human skeletal muscle. Gurd BJ; Perry CG; Heigenhauser GJ; Spriet LL; Bonen A Appl Physiol Nutr Metab; 2010 Jun; 35(3):350-7. PubMed ID: 20555380 [TBL] [Abstract][Full Text] [Related]
13. Effect of 5-week moderate intensity endurance training on the oxidative stress, muscle specific uncoupling protein (UCP3) and superoxide dismutase (SOD2) contents in vastus lateralis of young, healthy men. Majerczak J; Rychlik B; Grzelak A; Grzmil P; Karasinski J; Pierzchalski P; Pulaski L; Bartosz G; Zoladz JA J Physiol Pharmacol; 2010 Dec; 61(6):743-51. PubMed ID: 21224506 [TBL] [Abstract][Full Text] [Related]
14. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. Little JP; Gillen JB; Percival ME; Safdar A; Tarnopolsky MA; Punthakee Z; Jung ME; Gibala MJ J Appl Physiol (1985); 2011 Dec; 111(6):1554-60. PubMed ID: 21868679 [TBL] [Abstract][Full Text] [Related]
15. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. Gibala MJ; McGee SL; Garnham AP; Howlett KF; Snow RJ; Hargreaves M J Appl Physiol (1985); 2009 Mar; 106(3):929-34. PubMed ID: 19112161 [TBL] [Abstract][Full Text] [Related]
16. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. Gibala MJ; Little JP; van Essen M; Wilkin GP; Burgomaster KA; Safdar A; Raha S; Tarnopolsky MA J Physiol; 2006 Sep; 575(Pt 3):901-11. PubMed ID: 16825308 [TBL] [Abstract][Full Text] [Related]
17. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574 [TBL] [Abstract][Full Text] [Related]
18. Inclusion of sprints in moderate intensity continuous training leads to muscle oxidative adaptations in trained individuals. Gunnarsson TP; Brandt N; Fiorenza M; Hostrup M; Pilegaard H; Bangsbo J Physiol Rep; 2019 Feb; 7(4):e13976. PubMed ID: 30793541 [TBL] [Abstract][Full Text] [Related]
19. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. Granata C; Oliveira RS; Little JP; Renner K; Bishop DJ FASEB J; 2016 Feb; 30(2):959-70. PubMed ID: 26572168 [TBL] [Abstract][Full Text] [Related]
20. Combined effects of whole-body vibration, resistance exercise, and vascular occlusion on skeletal muscle and performance. Item F; Denkinger J; Fontana P; Weber M; Boutellier U; Toigo M Int J Sports Med; 2011 Oct; 32(10):781-7. PubMed ID: 21870317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]