These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21448485)

  • 1. A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation.
    Chen CH; Chuang SC; Su HC; Hsu WL; Yew TR; Chang YC; Yeh SR; Yao DJ
    Lab Chip; 2011 May; 11(9):1647-55. PubMed ID: 21448485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-multi-probe electrode array to measure neural signals.
    Chen CH; Yao DJ; Tseng SH; Lu SW; Chiao CC; Yeh SR
    Biosens Bioelectron; 2009 Mar; 24(7):1911-7. PubMed ID: 19027284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel glass microprobe arrays for neural recording.
    Lin CW; Lee YT; Chang CW; Hsu WL; Chang YC; Fang W
    Biosens Bioelectron; 2009 Oct; 25(2):475-81. PubMed ID: 19726175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible carbon nanotubes electrode for neural recording.
    Lin CM; Lee YT; Yeh SR; Fang W
    Biosens Bioelectron; 2009 May; 24(9):2791-7. PubMed ID: 19272765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophilic modification of neural microelectrode arrays based on multi-walled carbon nanotubes.
    Chen CH; Su HC; Chuang SC; Yen SJ; Chen YC; Lee YT; Chen H; Yew TR; Chang YC; Yeh SR; Yao DJ
    Nanotechnology; 2010 Dec; 21(48):485501. PubMed ID: 21051797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain.
    Chen YY; Lai HY; Lin SH; Cho CW; Chao WH; Liao CH; Tsang S; Chen YF; Lin SY
    J Neurosci Methods; 2009 Aug; 182(1):6-16. PubMed ID: 19467262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-dimensional microelectrode array for chronic neural recording.
    Hoogerwerf AC; Wise KD
    IEEE Trans Biomed Eng; 1994 Dec; 41(12):1136-46. PubMed ID: 7851915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-yield microassembly structure for three-dimensional microelectrode arrays.
    Bai Q; Wise KD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):281-9. PubMed ID: 10743769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CMOS neuroelectronic interface based on two-dimensional transistor arrays with monolithically-integrated circuitry.
    Chang CH; Chang SR; Lin JS; Lee YT; Yeh SR; Chen H
    Biosens Bioelectron; 2009 Feb; 24(6):1757-64. PubMed ID: 18951013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated wireless neural interface based on the Utah electrode array.
    Kim S; Bhandari R; Klein M; Negi S; Rieth L; Tathireddy P; Toepper M; Oppermann H; Solzbacher F
    Biomed Microdevices; 2009 Apr; 11(2):453-66. PubMed ID: 19067174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two multichannel integrated circuits for neural recording and signal processing.
    Obeid I; Morizio JC; Moxon KA; Nicolelis MA; Wolf PD
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):255-8. PubMed ID: 12665041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CMOS-based microelectrode array for interaction with neuronal cultures.
    Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A
    J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays.
    Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration microelectrode array for peripheral nerve recording and stimulation.
    Kovacs GT; Storment CW; Rosen JM
    IEEE Trans Biomed Eng; 1992 Sep; 39(9):893-902. PubMed ID: 1473818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cone-shaped 3D carbon nanotube probe for neural recording.
    Su HC; Lin CM; Yen SJ; Chen YC; Chen CH; Yeh SR; Fang W; Chen H; Yao DJ; Chang YC; Yew TR
    Biosens Bioelectron; 2010 Sep; 26(1):220-7. PubMed ID: 20685101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new multi-electrode array design for chronic neural recording, with independent and automatic hydraulic positioning.
    Sato T; Suzuki T; Mabuchi K
    J Neurosci Methods; 2007 Feb; 160(1):45-51. PubMed ID: 16996616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration.
    Kuo JT; Kim BJ; Hara SA; Lee CD; Gutierrez CA; Hoang TQ; Meng E
    Lab Chip; 2013 Feb; 13(4):554-61. PubMed ID: 23160191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.