These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 21448485)
41. Estimation of neural energy in microelectrode signals. Gaumond RP; Clement R; Silva R; Sander D J Neural Eng; 2004 Sep; 1(3):127-34. PubMed ID: 15876631 [TBL] [Abstract][Full Text] [Related]
42. Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization. Khilwani R; Gilgunn PJ; Kozai TD; Ong XC; Korkmaz E; Gunalan PK; Cui XT; Fedder GK; Ozdoganlar OB Biomed Microdevices; 2016 Dec; 18(6):97. PubMed ID: 27778225 [TBL] [Abstract][Full Text] [Related]
43. Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays. Kopanitsa MV; Afinowi NO; Grant SG BMC Neurosci; 2006 Aug; 7():61. PubMed ID: 16942609 [TBL] [Abstract][Full Text] [Related]
44. An economical multi-channel cortical electrode array for extended periods of recording during behavior. Rennaker RL; Ruyle AM; Street SE; Sloan AM J Neurosci Methods; 2005 Mar; 142(1):97-105. PubMed ID: 15652622 [TBL] [Abstract][Full Text] [Related]
45. Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. Toda H; Suzuki T; Sawahata H; Majima K; Kamitani Y; Hasegawa I Neuroimage; 2011 Jan; 54(1):203-12. PubMed ID: 20696254 [TBL] [Abstract][Full Text] [Related]
46. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. Kipke DR; Vetter RJ; Williams JC; Hetke JF IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260 [TBL] [Abstract][Full Text] [Related]
47. Integrated circuit amplifiers for multi-electrode intracortical recording. Jochum T; Denison T; Wolf P J Neural Eng; 2009 Feb; 6(1):012001. PubMed ID: 19139560 [TBL] [Abstract][Full Text] [Related]
48. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. Otto KJ; Johnson MD; Kipke DR IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763 [TBL] [Abstract][Full Text] [Related]
49. Design and Fabrication of a Three-Dimensional Multi-Electrode Array for Neuron Electrophysiology. Zuo L; Yu S; Briggs CA; Kantor S; Pan JY J Biomech Eng; 2017 Dec; 139(12):. PubMed ID: 28975276 [TBL] [Abstract][Full Text] [Related]
50. A novel high channel-count system for acute multisite neuronal recordings. Hofmann UG; Folkers A; Mösch F; Malina T; Menne KM; Biella G; Fagerstedt P; De Schutter E; Jensen W; Yoshida K; Hoehl D; Thomas U; Kindlundh MG; Norlin P; de Curtis M IEEE Trans Biomed Eng; 2006 Aug; 53(8):1672-7. PubMed ID: 16916102 [TBL] [Abstract][Full Text] [Related]
51. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording. Breckenridge LJ; Wilson RJ; Connolly P; Curtis AS; Dow JA; Blackshaw SE; Wilkinson CD J Neurosci Res; 1995 Oct; 42(2):266-76. PubMed ID: 8568928 [TBL] [Abstract][Full Text] [Related]
52. Flexible polymer substrate and tungsten microelectrode array for an implantable neural recording system. Patrick E; Sankar V; Rowe W; Yen SF; Sanchez JC; Nishida T Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3158-61. PubMed ID: 19163377 [TBL] [Abstract][Full Text] [Related]
53. Transparent, Flexible, Penetrating Microelectrode Arrays with Capabilities of Single-Unit Electrophysiology. Seo KJ; Artoni P; Qiang Y; Zhong Y; Han X; Shi Z; Yao W; Fagiolini M; Fang H Adv Biosyst; 2019 Mar; 3(3):e1800276. PubMed ID: 32627399 [TBL] [Abstract][Full Text] [Related]
54. High-density optrodes for multi-scale electrophysiology and optogenetic stimulation. Chamanzar M; Borysov M; Maharbiz MM; Blanche TJ Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6838-41. PubMed ID: 25571567 [TBL] [Abstract][Full Text] [Related]
55. Microprobe array with low impedance electrodes and highly flexible polyimide cables for acute neural recording. Kisban S; Herwik S; Seidl K; Rubehn B; Jezzini A; Umiltà MA; Fogassi L; Stieglitz T; Paul O; Ruther P Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():175-8. PubMed ID: 18001917 [TBL] [Abstract][Full Text] [Related]
56. Low-cost and easy-fabrication lightweight drivable electrode array for multiple-regions electrophysiological recording in free-moving mice. Sun C; Cao Y; Huang J; Huang K; Lu Y; Zhong C J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996053 [No Abstract] [Full Text] [Related]
57. A chronically implantable, hybrid cannula-electrode device for assessing the effects of molecules on electrophysiological signals in freely behaving animals. Greger B; Kateb B; Gruen P; Patterson PH J Neurosci Methods; 2007 Jul; 163(2):321-5. PubMed ID: 17499854 [TBL] [Abstract][Full Text] [Related]
58. A flexible hydrophilic-modified graphene microprobe for neural and cardiac recording. Chen CH; Lin CT; Hsu WL; Chang YC; Yeh SR; Li LJ; Yao DJ Nanomedicine; 2013 Jul; 9(5):600-4. PubMed ID: 23347893 [TBL] [Abstract][Full Text] [Related]
59. Fabrication of polymer neural probes with sub-cellular features for reduced tissue encapsulation. Seymour JP; Kipke DR Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4606-9. PubMed ID: 17947102 [TBL] [Abstract][Full Text] [Related]
60. A polymer-based neural microimplant for optogenetic applications: design and first in vivo study. Rubehn B; Wolff SB; Tovote P; Lüthi A; Stieglitz T Lab Chip; 2013 Feb; 13(4):579-88. PubMed ID: 23306183 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]