These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21448488)

  • 1. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties.
    Liu G; Yu JC; Lu GQ; Cheng HM
    Chem Commun (Camb); 2011 Jun; 47(24):6763-83. PubMed ID: 21448488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorinated semiconductor photocatalysts: tunable synthesis and unique properties.
    Liu S; Yu J; Cheng B; Jaroniec M
    Adv Colloid Interface Sci; 2012 May; 173():35-53. PubMed ID: 22425280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube?
    Zhang Y; Tang ZR; Fu X; Xu YJ
    ACS Nano; 2011 Sep; 5(9):7426-35. PubMed ID: 21870826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AgI microplate monocrystals with polar {0001} facets: spontaneous photocarrier separation and enhanced photocatalytic activity.
    Kuang Q; Zheng X; Yang S
    Chemistry; 2014 Feb; 20(9):2637-45. PubMed ID: 24449437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiconductor photocatalysts for water oxidation: current status and challenges.
    Yang L; Zhou H; Fan T; Zhang D
    Phys Chem Chem Phys; 2014 Apr; 16(15):6810-26. PubMed ID: 24599528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-based semiconductor photocatalysts.
    Xiang Q; Yu J; Jaroniec M
    Chem Soc Rev; 2012 Jan; 41(2):782-96. PubMed ID: 21853184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on nanomagnets supported TiO2 photocatalysts prepared by a sol-gel process in reverse microemulsion combining with solvent-thermal technique.
    Li H; Zhang Y; Wang S; Wu Q; Liu C
    J Hazard Mater; 2009 Sep; 169(1-3):1045-53. PubMed ID: 19443114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (1)Rational design of a charge shunt: modification upon crystal facet engineering of semiconductor photocatalysts.
    Feng W; Weng S; Zheng Z; Fang Z; Liu P
    Chem Commun (Camb); 2015 Jun; 51(56):11186-9. PubMed ID: 26084253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative characterization of hydroxyl radicals produced by various photocatalysts.
    Xiang Q; Yu J; Wong PK
    J Colloid Interface Sci; 2011 May; 357(1):163-7. PubMed ID: 21349533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-active anatase TiO₂ nanosheets exposed with 95% {100} facets toward efficient H₂ evolution and CO₂ photoreduction.
    Xu H; Ouyang S; Li P; Kako T; Ye J
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1348-54. PubMed ID: 23360579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting.
    Wang S; Liu G; Wang L
    Chem Rev; 2019 Apr; 119(8):5192-5247. PubMed ID: 30875200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemical reduction of CO₂ using TiO₂: effects of organic adsorbates on TiO₂ and deposition of Pd onto TiO₂.
    Yui T; Kan A; Saitoh C; Koike K; Ibusuki T; Ishitani O
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2594-600. PubMed ID: 21661739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge separation between polar {111} surfaces of CoO octahedrons and their enhanced visible-light photocatalytic activity.
    Liu B; Ma L; Ning LC; Zhang CJ; Han GP; Pei CJ; Zhao H; Liu SZ; Yang HQ
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6109-17. PubMed ID: 25734621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis.
    Li J; Yu Y; Zhang L
    Nanoscale; 2014 Aug; 6(15):8473-88. PubMed ID: 24975748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface engineered 2D materials for photocatalysis.
    Sun X; Shi L; Huang H; Song X; Ma T
    Chem Commun (Camb); 2020 Sep; 56(75):11000-11013. PubMed ID: 32870206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications.
    Huang MH; Naresh G; Chen HS
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):4-15. PubMed ID: 29227621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-.
    Abe R; Sayama K; Sugihara H
    J Phys Chem B; 2005 Aug; 109(33):16052-61. PubMed ID: 16853039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface tuning for oxide-based nanomaterials as efficient photocatalysts.
    Jing L; Zhou W; Tian G; Fu H
    Chem Soc Rev; 2013 Dec; 42(24):9509-49. PubMed ID: 24048255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrothermal synthesis of Na(0.5)La(0.5)TiO3-LaCrO3 solid-solution single-crystal nanocubes for visible-light-driven photocatalytic H2 evolution.
    Shi J; Ye J; Zhou Z; Li M; Guo L
    Chemistry; 2011 Jul; 17(28):7858-67. PubMed ID: 21618626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts.
    Peng L; Xie T; Lu Y; Fan H; Wang D
    Phys Chem Chem Phys; 2010 Jul; 12(28):8033-41. PubMed ID: 20523943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.