These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 21448506)

  • 1. A new approach to nucleation of cavitation bubbles at chemically modified surfaces.
    Belova V; Shchukin DG; Gorin DA; Kopyshev A; Möhwald H
    Phys Chem Chem Phys; 2011 May; 13(17):8015-23. PubMed ID: 21448506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces.
    Belova V; Gorin DA; Shchukin DG; Möhwald H
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):417-25. PubMed ID: 21280665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement and control of acoustic cavitation yield by low-level dual frequency sonication: a subharmonic analysis.
    Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM; Nilchiani V; Goudarzi H
    Ultrason Sonochem; 2011 Jan; 18(1):394-400. PubMed ID: 20678953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-energy electron beam lithography of octadecylphosphonic acid monolayers on aluminum.
    Gadegaard N; Chen X; Rutten FJ; Alexander MR
    Langmuir; 2008 Mar; 24(5):2057-63. PubMed ID: 18215077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field.
    Cao H; Wan M; Qiao Y; Zhang S; Li R
    Ultrason Sonochem; 2012 Mar; 19(2):257-63. PubMed ID: 21862375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional self-assembly of 1-pyrylphosphonic acid: transfer of stacks on structured surface.
    Yip HL; Ma H; Jen AK; Dong J; Parviz BA
    J Am Chem Soc; 2006 May; 128(17):5672-9. PubMed ID: 16637633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.
    Xu S; Zong Y; Li W; Zhang S; Wan M
    Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.
    Chen H; Li X; Wan M
    Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface.
    Mark SS; Sandhyarani N; Zhu C; Campagnolo C; Batt CA
    Langmuir; 2004 Aug; 20(16):6808-17. PubMed ID: 15274589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistics of acoustically induced bubble-nucleation events in in vitro blood: a feasibility study.
    Gateau J; Taccoen N; Tanter M; Aubry JF
    Ultrasound Med Biol; 2013 Oct; 39(10):1812-25. PubMed ID: 23932270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancement of high power ultrasound technology for the destruction of surface active waterborne contaminants.
    Sostaric JZ; Weavers LK
    Ultrason Sonochem; 2010 Aug; 17(6):1021-6. PubMed ID: 20036177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pulsed ultrasound on the adsorption of n-alkyl anionic surfactants at the gas/solution interface of cavitation bubbles.
    Yang L; Sostaric JZ; Rathman JF; Kuppusamy P; Weavers LK
    J Phys Chem B; 2007 Feb; 111(6):1361-7. PubMed ID: 17249713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma oxidized polyhydroxymethylsiloxane--a new smooth surface for supported lipid bilayer formation.
    Satriano C; Edvardsson M; Ohlsson G; Wang G; Svedhem S; Kasemo B
    Langmuir; 2010 Apr; 26(8):5715-25. PubMed ID: 20170173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of surface-active solutes on bubble coalescence in the presence of ultrasound.
    Lee J; Kentish SE; Ashokkumar M
    J Phys Chem B; 2005 Mar; 109(11):5095-9. PubMed ID: 16863171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on the primary and secondary nucleation of ice by power ultrasound.
    Chow R; Blindt R; Chivers R; Povey M
    Ultrasonics; 2005 Feb; 43(4):227-30. PubMed ID: 15567197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theoretical model for ice primary nucleation induced by acoustic cavitation.
    Saclier M; Peczalski R; Andrieu J
    Ultrason Sonochem; 2010 Jan; 17(1):98-105. PubMed ID: 19482538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavitation milling of natural cellulose to nanofibrils.
    Pinjari DV; Pandit AB
    Ultrason Sonochem; 2010 Jun; 17(5):845-52. PubMed ID: 20362487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental investigations on ultrasound mediated particle breakage.
    Raman V; Abbas A
    Ultrason Sonochem; 2008 Jan; 15(1):55-64. PubMed ID: 17412632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound.
    Chen H; Li X; Wan M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e427-9. PubMed ID: 16782158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.