BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21448508)

  • 1. Probing the binding kinetics of proinflammatory cytokine-antibody interactions using dual color fluorescence cross correlation spectroscopy.
    Wu CY; Huang CK; Chung CY; Huang IP; Hwu Y; Yang CS; Lai YK; Lo LW; Chiang SY
    Analyst; 2011 May; 136(10):2111-8. PubMed ID: 21448508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of binding and denaturation dynamics of IgG and anti-IgG using dual color fluorescence correlation spectroscopy.
    Varghese LT; Sinha RK; Irudayaraj J
    Anal Chim Acta; 2008 Sep; 625(1):103-9. PubMed ID: 18721546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence lifetime cross correlation spectroscopy resolves EGFR and antagonist interaction in live cells.
    Chen J; Irudayaraj J
    Anal Chem; 2010 Aug; 82(15):6415-21. PubMed ID: 20586411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of dual-color fluorescence cross-correlation spectroscopy in antibody binding studies.
    Ruan Q; Tetin SY
    Anal Biochem; 2008 Mar; 374(1):182-95. PubMed ID: 18062911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction kinetics of tetramethylrhodamine transferrin with human transferrin receptor studied by fluorescence correlation spectroscopy.
    Schüler J; Frank J; Trier U; Schäfer-Korting M; Saenger W
    Biochemistry; 1999 Jun; 38(26):8402-8. PubMed ID: 10387086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Practical guidelines for dual-color fluorescence cross-correlation spectroscopy.
    Bacia K; Schwille P
    Nat Protoc; 2007; 2(11):2842-56. PubMed ID: 18007619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased stability and lifetime of the complex formed between DNA and meta-phenyl-substituted Hoechst dyes as studied by fluorescence titrations and stopped-flow kinetics.
    Breusegem SY; Sadat-Ebrahimi SE; Douglas KT; Clegg RM; Loontiens FG
    J Mol Biol; 2001 May; 308(4):649-63. PubMed ID: 11350167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral mobility and specific binding to GABA(A) receptors on hippocampal neurons monitored by fluorescence correlation spectroscopy.
    Meissner O; Häberlein H
    Biochemistry; 2003 Feb; 42(6):1667-72. PubMed ID: 12578381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on homogeneous competitive immune reaction by fluorescence correlation spectroscopy: using synthetic peptide as antigen.
    Xie C; Dong C; Ren J
    Talanta; 2009 Aug; 79(3):971-4. PubMed ID: 19576474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of prion protein immune complex for bovine spongiform encephalopathy diagnosis using fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy.
    Fujii F; Horiuchi M; Ueno M; Sakata H; Nagao I; Tamura M; Kinjo M
    Anal Biochem; 2007 Nov; 370(2):131-41. PubMed ID: 17825783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence correlation spectroscopy: linking molecular dynamics to biological function in vitro and in situ.
    Fitzpatrick JA; Lillemeier BF
    Curr Opin Struct Biol; 2011 Oct; 21(5):650-60. PubMed ID: 21767945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip.
    Chen A; Eberle MM; Lunt EJ; Liu S; Leake K; Rudenko MI; Hawkins AR; Schmidt H
    Lab Chip; 2011 Apr; 11(8):1502-6. PubMed ID: 21340094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dye-labeled benzodiazepines: development of small ligands for receptor binding studies using fluorescence correlation spectroscopy.
    Hegener O; Jordan R; Häberlein H
    J Med Chem; 2004 Jul; 47(14):3600-5. PubMed ID: 15214787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation of fluorescent molecules by functionalized polymeric nanocontainers: investigation by confocal fluorescence imaging and fluorescence correlation spectroscopy.
    Rigler P; Meier W
    J Am Chem Soc; 2006 Jan; 128(1):367-73. PubMed ID: 16390167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of fluorescence correlation spectroscopy to hapten-antibody binding.
    Hazlett TL; Ruan Q; Tetin SY
    Methods Mol Biol; 2005; 305():415-38. PubMed ID: 15940009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'True' single-molecule molecule observations by fluorescence correlation spectroscopy and two-color fluorescence cross-correlation spectroscopy.
    Földes-Papp Z
    Exp Mol Pathol; 2007 Apr; 82(2):147-55. PubMed ID: 17258199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benzodiazepine binding studies on living cells: application of small ligands for fluorescence correlation spectroscopy.
    Hegener O; Jordan R; Häberlein H
    Biol Chem; 2002 Nov; 383(11):1801-7. PubMed ID: 12530545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of the b-subunit in the ATP synthase from Escherichia coli.
    Diez M; Börsch M; Zimmermann B; Turina P; Dunn SD; Gräber P
    Biochemistry; 2004 Feb; 43(4):1054-64. PubMed ID: 14744151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size dependence of protein diffusion very close to membrane surfaces: measurement by total internal reflection with fluorescence correlation spectroscopy.
    Pero JK; Haas EM; Thompson NL
    J Phys Chem B; 2006 Jun; 110(22):10910-8. PubMed ID: 16771344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of weak ligand interactions of leukocyte Ig-like receptor B1 by fluorescence correlation spectroscopy.
    Kuroki K; Kobayashi S; Shiroishi M; Kajikawa M; Okamoto N; Kohda D; Maenaka K
    J Immunol Methods; 2007 Mar; 320(1-2):172-6. PubMed ID: 17217953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.