These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 21448604)

  • 1. Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device.
    Justin G; Nasir M; Ligler FS
    Anal Bioanal Chem; 2011 May; 400(5):1347-58. PubMed ID: 21448604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of diffusion on impedance measurements in a hydrodynamic flow focusing sensor.
    Nasir M; Price DT; Shriver-Lake LC; Ligler F
    Lab Chip; 2010 Oct; 10(20):2787-95. PubMed ID: 20725680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic focusing of conducting fluids for conductivity-based biosensors.
    Nasir M; Ateya DA; Burk D; Golden JP; Ligler FS
    Biosens Bioelectron; 2010 Feb; 25(6):1363-9. PubMed ID: 19932019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence.
    Joo S; Kim KH; Kim HC; Chung TD
    Biosens Bioelectron; 2010 Feb; 25(6):1509-15. PubMed ID: 20004091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic based impedance biosensor for pathogens detection in food products.
    Abdullah A; Dastider SG; Jasim I; Shen Z; Yuksek N; Zhang S; Dweik M; Almasri M
    Electrophoresis; 2019 Feb; 40(4):508-520. PubMed ID: 30556147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic focusing--a versatile tool.
    Golden JP; Justin GA; Nasir M; Ligler FS
    Anal Bioanal Chem; 2012 Jan; 402(1):325-35. PubMed ID: 21952728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of hydrodynamic focusing in a microfluidic coulter counter device.
    Zhang M; Lian Y; Harnett C; Brehob E
    J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved detection limits of toxic biochemical species based on impedance measurements in electrochemical biosensors.
    Narakathu BB; Atashbar MZ; Bejcek BE
    Biosens Bioelectron; 2010 Oct; 26(2):923-8. PubMed ID: 20655726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic-based frequency-multiplexing impedance sensor (FMIS).
    Meissner R; Joris P; Eker B; Bertsch A; Renaud P
    Lab Chip; 2012 Aug; 12(15):2712-8. PubMed ID: 22627460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an aptamer-based impedimetric bioassay using microfluidic system and magnetic separation for protein detection.
    Wang Y; Ye Z; Ping J; Jing S; Ying Y
    Biosens Bioelectron; 2014 Sep; 59():106-11. PubMed ID: 24709326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new floating electrode structure for generating homogeneous electrical fields in microfluidic channels.
    Segerink LI; Sprenkels AJ; Bomer JG; Vermes I; van den Berg A
    Lab Chip; 2011 Jun; 11(12):1995-2001. PubMed ID: 21279234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoelectronic impedance detection of target cells.
    Esfandyarpour R; Javanmard M; Koochak Z; Harris JS; Davis RW
    Biotechnol Bioeng; 2014 Jun; 111(6):1161-9. PubMed ID: 24338648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors.
    Wang L; Wang H; Wang L; Mitchelson K; Yu Z; Cheng J
    Biosens Bioelectron; 2008 Sep; 24(1):14-21. PubMed ID: 18511255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic device for label-free detection of Escherichia coli in drinking water using positive dielectrophoretic focusing, capturing, and impedance measurement.
    Kim M; Jung T; Kim Y; Lee C; Woo K; Seol JH; Yang S
    Biosens Bioelectron; 2015 Dec; 74():1011-5. PubMed ID: 26264268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of Interdigitated Electrode Interactions with Gold Nanoparticles for Impedance-Based Biosensing Applications.
    MacKay S; Hermansen P; Wishart D; Chen J
    Sensors (Basel); 2015 Sep; 15(9):22192-208. PubMed ID: 26364638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample concentration and impedance detection on a microfluidic polymer chip.
    Sabounchi P; Morales AM; Ponce P; Lee LP; Simmons BA; Davalos RV
    Biomed Microdevices; 2008 Oct; 10(5):661-70. PubMed ID: 18484178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip micro-biosensor for the detection of human CD4(+) cells based on AC impedance and optical analysis.
    Mishra NN; Retterer S; Zieziulewicz TJ; Isaacson M; Szarowski D; Mousseau DE; Lawrence DA; Turner JN
    Biosens Bioelectron; 2005 Nov; 21(5):696-704. PubMed ID: 16242607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.