These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 21448743)
1. Development of an empirical nonlinear model for mercury bioaccumulation in the South and South Fork Shenandoah rivers of Virginia. Brent RN; Kain DG Arch Environ Contam Toxicol; 2011 Nov; 61(4):614-23. PubMed ID: 21448743 [TBL] [Abstract][Full Text] [Related]
2. Use of artificial stream mesocosms to investigate mercury uptake in the South River, Virginia, USA. Brent RN; Berberich DA Arch Environ Contam Toxicol; 2014 Feb; 66(2):201-12. PubMed ID: 24253586 [TBL] [Abstract][Full Text] [Related]
3. Mercury exposure in terrestrial birds far downstream of an historical point source. Jackson AK; Evers DC; Folsom SB; Condon AM; Diener J; Goodrick LF; McGann AJ; Schmerfeld J; Cristol DA Environ Pollut; 2011 Dec; 159(12):3302-8. PubMed ID: 21903311 [TBL] [Abstract][Full Text] [Related]
4. Mercury levels and relationships in water, sediment, and fish tissue in the Willamette Basin, Oregon. Hope BK; Rubin JR Arch Environ Contam Toxicol; 2005 Apr; 48(3):367-80. PubMed ID: 15750769 [TBL] [Abstract][Full Text] [Related]
5. A dynamic model using monitoring data and watershed characteristics to project fish tissue mercury concentrations in stream systems. Chan C; Heinbokel JF; Myers JA; Jacobs RR Integr Environ Assess Manag; 2012 Oct; 8(4):709-22. PubMed ID: 22535752 [TBL] [Abstract][Full Text] [Related]
6. Influences on mercury bioaccumulation factors for the Savannah River. Paller MH; Bowers JA; Littrell JW; Guanlao AV Arch Environ Contam Toxicol; 2004 Feb; 46(2):236-43. PubMed ID: 15106676 [TBL] [Abstract][Full Text] [Related]
7. Mercury contamination in the vicinity of a derelict chlor-alkali plant Part II: contamination of the aquatic and terrestrial food chain and potential risks to the local population. Ullrich SM; Ilyushchenko MA; Tanton TW; Uskov GA Sci Total Environ; 2007 Aug; 381(1-3):290-306. PubMed ID: 17433415 [TBL] [Abstract][Full Text] [Related]
8. Optimizing stream water mercury sampling for calculation of fish bioaccumulation factors. Riva-Murray K; Bradley PM; Scudder Eikenberry BC; Knightes CD; Journey CA; Brigham ME; Button DT Environ Sci Technol; 2013 Jun; 47(11):5904-12. PubMed ID: 23668662 [TBL] [Abstract][Full Text] [Related]
9. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. DeForest DK; Brix KV; Adams WJ Aquat Toxicol; 2007 Aug; 84(2):236-46. PubMed ID: 17673306 [TBL] [Abstract][Full Text] [Related]
10. Intra- and inter-specific variability in total and methylmercury bioaccumulation by eight marine fish species from the Azores. Magalhães MC; Costa V; Menezes GM; Pinho MR; Santos RS; Monteiro LR Mar Pollut Bull; 2007 Oct; 54(10):1654-62. PubMed ID: 17727898 [TBL] [Abstract][Full Text] [Related]
11. Floodplain methylmercury biomagnification factor higher than that of the contiguous river (South River, Virginia USA). Newman MC; Xu X; Condon A; Liang L Environ Pollut; 2011 Oct; 159(10):2840-4. PubMed ID: 21621888 [TBL] [Abstract][Full Text] [Related]
12. Mercury concentrations in water and hybrid striped bass (Morone saxatilis × M. chrysops) muscle tissue samples collected from the Ohio River, USA. Emery EB; Spaeth JP Arch Environ Contam Toxicol; 2011 Apr; 60(3):486-95. PubMed ID: 20577729 [TBL] [Abstract][Full Text] [Related]
13. Tracing sources and bioaccumulation of mercury in fish of Lake Baikal--Angara River using Hg isotopic composition. Perrot V; Epov VN; Pastukhov MV; Grebenshchikova VI; Zouiten C; Sonke JE; Husted S; Donard OF; Amouroux D Environ Sci Technol; 2010 Nov; 44(21):8030-7. PubMed ID: 20942479 [TBL] [Abstract][Full Text] [Related]
14. Decreasing aqueous mercury concentrations to meet the water quality criterion in fish: examining the water-fish relationship in two point-source contaminated streams. Mathews TJ; Southworth G; Peterson MJ; Roy WK; Ketelle RH; Valentine C; Gregory S Sci Total Environ; 2013 Jan; 443():836-43. PubMed ID: 23246664 [TBL] [Abstract][Full Text] [Related]
15. Long-term changes in mercury concentrations in fish from the middle Savannah River. Paller MH; Littrell JW Sci Total Environ; 2007 Sep; 382(2-3):375-82. PubMed ID: 17544059 [TBL] [Abstract][Full Text] [Related]
16. Mercury distribution in fish organs and food regimes: Significant relationships from twelve species collected in French Guiana (Amazonian basin). Régine MB; Gilles D; Yannick D; Alain B Sci Total Environ; 2006 Sep; 368(1):262-70. PubMed ID: 16266741 [TBL] [Abstract][Full Text] [Related]
17. Bioaccumulation of mercury in muscle tissue of fish in the Elbe River (Czech Republic): multispecies monitoring study 1991-1996. Dusek L; Svobodová Z; Janousková D; Vykusová B; Jarkovský J; Smíd R; Pavlis P Ecotoxicol Environ Saf; 2005 Jun; 61(2):256-67. PubMed ID: 15883097 [TBL] [Abstract][Full Text] [Related]
18. Mercury transport and bioaccumulation in riverbank communities of the Alvarado Lagoon System, Veracruz State, Mexico. Guentzel JL; Portilla E; Keith KM; Keith EO Sci Total Environ; 2007 Dec; 388(1-3):316-24. PubMed ID: 17850849 [TBL] [Abstract][Full Text] [Related]
19. Influence of ecological factors and of land use on mercury levels in fish in the Tapajós River basin, Amazon. Sampaio da Silva D; Lucotte M; Paquet S; Davidson R Environ Res; 2009 May; 109(4):432-46. PubMed ID: 19356749 [TBL] [Abstract][Full Text] [Related]
20. Regional health assessment relating to mercury content of fish caught in the Yukon-Kuskokwim Delta rivers system. Duffy LK; Rodgers T; Patton M Alaska Med; 1998; 40(4):75-7, 89. PubMed ID: 10202403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]