BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21448743)

  • 1. Development of an empirical nonlinear model for mercury bioaccumulation in the South and South Fork Shenandoah rivers of Virginia.
    Brent RN; Kain DG
    Arch Environ Contam Toxicol; 2011 Nov; 61(4):614-23. PubMed ID: 21448743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of artificial stream mesocosms to investigate mercury uptake in the South River, Virginia, USA.
    Brent RN; Berberich DA
    Arch Environ Contam Toxicol; 2014 Feb; 66(2):201-12. PubMed ID: 24253586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury exposure in terrestrial birds far downstream of an historical point source.
    Jackson AK; Evers DC; Folsom SB; Condon AM; Diener J; Goodrick LF; McGann AJ; Schmerfeld J; Cristol DA
    Environ Pollut; 2011 Dec; 159(12):3302-8. PubMed ID: 21903311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury levels and relationships in water, sediment, and fish tissue in the Willamette Basin, Oregon.
    Hope BK; Rubin JR
    Arch Environ Contam Toxicol; 2005 Apr; 48(3):367-80. PubMed ID: 15750769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dynamic model using monitoring data and watershed characteristics to project fish tissue mercury concentrations in stream systems.
    Chan C; Heinbokel JF; Myers JA; Jacobs RR
    Integr Environ Assess Manag; 2012 Oct; 8(4):709-22. PubMed ID: 22535752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influences on mercury bioaccumulation factors for the Savannah River.
    Paller MH; Bowers JA; Littrell JW; Guanlao AV
    Arch Environ Contam Toxicol; 2004 Feb; 46(2):236-43. PubMed ID: 15106676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury contamination in the vicinity of a derelict chlor-alkali plant Part II: contamination of the aquatic and terrestrial food chain and potential risks to the local population.
    Ullrich SM; Ilyushchenko MA; Tanton TW; Uskov GA
    Sci Total Environ; 2007 Aug; 381(1-3):290-306. PubMed ID: 17433415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing stream water mercury sampling for calculation of fish bioaccumulation factors.
    Riva-Murray K; Bradley PM; Scudder Eikenberry BC; Knightes CD; Journey CA; Brigham ME; Button DT
    Environ Sci Technol; 2013 Jun; 47(11):5904-12. PubMed ID: 23668662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration.
    DeForest DK; Brix KV; Adams WJ
    Aquat Toxicol; 2007 Aug; 84(2):236-46. PubMed ID: 17673306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra- and inter-specific variability in total and methylmercury bioaccumulation by eight marine fish species from the Azores.
    Magalhães MC; Costa V; Menezes GM; Pinho MR; Santos RS; Monteiro LR
    Mar Pollut Bull; 2007 Oct; 54(10):1654-62. PubMed ID: 17727898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Floodplain methylmercury biomagnification factor higher than that of the contiguous river (South River, Virginia USA).
    Newman MC; Xu X; Condon A; Liang L
    Environ Pollut; 2011 Oct; 159(10):2840-4. PubMed ID: 21621888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury concentrations in water and hybrid striped bass (Morone saxatilis × M. chrysops) muscle tissue samples collected from the Ohio River, USA.
    Emery EB; Spaeth JP
    Arch Environ Contam Toxicol; 2011 Apr; 60(3):486-95. PubMed ID: 20577729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracing sources and bioaccumulation of mercury in fish of Lake Baikal--Angara River using Hg isotopic composition.
    Perrot V; Epov VN; Pastukhov MV; Grebenshchikova VI; Zouiten C; Sonke JE; Husted S; Donard OF; Amouroux D
    Environ Sci Technol; 2010 Nov; 44(21):8030-7. PubMed ID: 20942479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreasing aqueous mercury concentrations to meet the water quality criterion in fish: examining the water-fish relationship in two point-source contaminated streams.
    Mathews TJ; Southworth G; Peterson MJ; Roy WK; Ketelle RH; Valentine C; Gregory S
    Sci Total Environ; 2013 Jan; 443():836-43. PubMed ID: 23246664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term changes in mercury concentrations in fish from the middle Savannah River.
    Paller MH; Littrell JW
    Sci Total Environ; 2007 Sep; 382(2-3):375-82. PubMed ID: 17544059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury distribution in fish organs and food regimes: Significant relationships from twelve species collected in French Guiana (Amazonian basin).
    Régine MB; Gilles D; Yannick D; Alain B
    Sci Total Environ; 2006 Sep; 368(1):262-70. PubMed ID: 16266741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccumulation of mercury in muscle tissue of fish in the Elbe River (Czech Republic): multispecies monitoring study 1991-1996.
    Dusek L; Svobodová Z; Janousková D; Vykusová B; Jarkovský J; Smíd R; Pavlis P
    Ecotoxicol Environ Saf; 2005 Jun; 61(2):256-67. PubMed ID: 15883097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury transport and bioaccumulation in riverbank communities of the Alvarado Lagoon System, Veracruz State, Mexico.
    Guentzel JL; Portilla E; Keith KM; Keith EO
    Sci Total Environ; 2007 Dec; 388(1-3):316-24. PubMed ID: 17850849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of ecological factors and of land use on mercury levels in fish in the Tapajós River basin, Amazon.
    Sampaio da Silva D; Lucotte M; Paquet S; Davidson R
    Environ Res; 2009 May; 109(4):432-46. PubMed ID: 19356749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional health assessment relating to mercury content of fish caught in the Yukon-Kuskokwim Delta rivers system.
    Duffy LK; Rodgers T; Patton M
    Alaska Med; 1998; 40(4):75-7, 89. PubMed ID: 10202403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.