These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21448757)

  • 1. Aggregation stability of a monoclonal antibody during downstream processing.
    Arosio P; Barolo G; Müller-Späth T; Wu H; Morbidelli M
    Pharm Res; 2011 Aug; 28(8):1884-94. PubMed ID: 21448757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation.
    Bickel F; Herold EM; Signes A; Romeijn S; Jiskoot W; Kiefer H
    Eur J Pharm Biopharm; 2016 Oct; 107():310-20. PubMed ID: 27449627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: from oligomers to larger aggregates.
    Arosio P; Rima S; Morbidelli M
    Pharm Res; 2013 Mar; 30(3):641-54. PubMed ID: 23054090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational and Colloidal Stabilities of Isolated Constant Domains of Human Immunoglobulin G and Their Impact on Antibody Aggregation under Acidic Conditions.
    Yageta S; Lauer TM; Trout BL; Honda S
    Mol Pharm; 2015 May; 12(5):1443-55. PubMed ID: 25871775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass spectrometric analysis of intact human monoclonal antibody aggregates fractionated by size-exclusion chromatography.
    Kükrer B; Filipe V; van Duijn E; Kasper PT; Vreeken RJ; Heck AJ; Jiskoot W
    Pharm Res; 2010 Oct; 27(10):2197-204. PubMed ID: 20680668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of cosolutes in the aggregation kinetics of monoclonal antibodies.
    Nicoud L; Sozo M; Arosio P; Yates A; Norrant E; Morbidelli M
    J Phys Chem B; 2014 Oct; 118(41):11921-30. PubMed ID: 25243487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of protein aggregation: the case of a therapeutic immunoglobulin.
    Demeule B; Lawrence MJ; Drake AF; Gurny R; Arvinte T
    Biochim Biophys Acta; 2007 Jan; 1774(1):146-53. PubMed ID: 17142116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the Degradation Behaviors of a Therapeutic Monoclonal Antibody Associated with pH and Buffer Species.
    Zheng S; Qiu D; Adams M; Li J; Mantri RV; Gandhi R
    AAPS PharmSciTech; 2017 Jan; 18(1):42-48. PubMed ID: 26340951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the role of salt type and concentration on the stability behavior of a monoclonal antibody solution.
    Arosio P; Jaquet B; Wu H; Morbidelli M
    Biophys Chem; 2012 Jul; 168-169():19-27. PubMed ID: 22750560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient molten globules and metastable aggregates induced by brief exposure of a monoclonal IgG to low pH.
    Filipe V; Kükrer B; Hawe A; Jiskoot W
    J Pharm Sci; 2012 Jul; 101(7):2327-39. PubMed ID: 22517069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation Kinetics for IgG1-Based Monoclonal Antibody Therapeutics.
    Singla A; Bansal R; Joshi V; Rathore AS
    AAPS J; 2016 May; 18(3):689-702. PubMed ID: 26902302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms.
    Brummitt RK; Nesta DP; Chang L; Kroetsch AM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2104-19. PubMed ID: 21213307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze/thaw of IGG solutions.
    Horn J; Jena S; Aksan A; Friess W
    Eur J Pharm Biopharm; 2019 Jan; 134():185-189. PubMed ID: 30529434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Online fluorescent dye detection method for the characterization of immunoglobulin G aggregation by size exclusion chromatography and asymmetrical flow field flow fractionation.
    Hawe A; Friess W; Sutter M; Jiskoot W
    Anal Biochem; 2008 Jul; 378(2):115-22. PubMed ID: 18455994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trimerization Dictates Solution Opalescence of a Monoclonal Antibody.
    Yang TC; Langford AJ; Kumar S; Ruesch JC; Wang W
    J Pharm Sci; 2016 Aug; 105(8):2328-37. PubMed ID: 27373839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Protein Conformation, Apparent Solubility, and Protein-Protein Interactions on the Rates and Mechanisms of Aggregation for an IgG1Monoclonal Antibody.
    Kalonia C; Toprani V; Toth R; Wahome N; Gabel I; Middaugh CR; Volkin DB
    J Phys Chem B; 2016 Jul; 120(29):7062-75. PubMed ID: 27380437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the mAb Aggregation Propensity Using Self-Interaction Chromatography as a Screening Tool.
    Hedberg SHM; Lee D; Mishra Y; Haigh JM; Williams DR
    Anal Chem; 2018 Mar; 90(6):3878-3885. PubMed ID: 29446917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative effects of pH and ionic strength on protein-protein interactions, unfolding, and aggregation for IgG1 antibodies.
    Sahin E; Grillo AO; Perkins MD; Roberts CJ
    J Pharm Sci; 2010 Dec; 99(12):4830-48. PubMed ID: 20821389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avoiding antibody aggregation during processing: establishing hold times.
    Joshi V; Shivach T; Kumar V; Yadav N; Rathore A
    Biotechnol J; 2014 Sep; 9(9):1195-205. PubMed ID: 24753430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation of anti-streptavidin immunoglobulin gamma-1 involves Fab unfolding and competing growth pathways mediated by pH and salt concentration.
    Kim N; Remmele RL; Liu D; Razinkov VI; Fernandez EJ; Roberts CJ
    Biophys Chem; 2013 Feb; 172():26-36. PubMed ID: 23334430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.