BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 21448862)

  • 1. Determination of the volatile profile of stoned table olives from different varieties by using HS-SPME and GC/IT-MS.
    Malheiro R; de Pinho PG; Casal S; Bento A; Pereira JA
    J Sci Food Agric; 2011 Jul; 91(9):1693-701. PubMed ID: 21448862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS).
    Aprea E; Biasioli F; Carlin S; Endrizzi I; Gasperi F
    J Agric Food Chem; 2009 May; 57(10):4011-8. PubMed ID: 19348421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cultivar effect on the phenolic composition and antioxidant potential of stoned table olives.
    Malheiro R; Sousa A; Casal S; Bento A; Pereira JA
    Food Chem Toxicol; 2011 Feb; 49(2):450-7. PubMed ID: 21108983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of leaf volatiles from olive (Olea europaea) and their possible role in the ovipositional preferences of olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae).
    Malheiro R; Casal S; Cunha SC; Baptista P; Pereira JA
    Phytochemistry; 2016 Jan; 121():11-9. PubMed ID: 26603276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties.
    Perestrelo R; Barros AS; Rocha SM; Câmara JS
    Talanta; 2011 Sep; 85(3):1483-93. PubMed ID: 21807213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS.
    Ferreira L; Perestrelo R; Caldeira M; Câmara JS
    J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile composition of Brassica oleracea L. var. costata DC leaves using solid-phase microextraction and gas chromatography/ion trap mass spectrometry.
    de Pinho PG; Valentão P; Gonçalves RF; Sousa C; Andrade PB
    Rapid Commun Mass Spectrom; 2009 Aug; 23(15):2292-300. PubMed ID: 19579264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC-MS.
    Qin G; Tao S; Cao Y; Wu J; Zhang H; Huang W; Zhang S
    Food Chem; 2012 Oct; 134(4):2367-82. PubMed ID: 23442698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of Chinese vinegars based on headspace solid-phase microextraction-gas chromatography mass spectrometry of volatile compounds and multivariate analysis.
    Xiao Z; Dai S; Niu Y; Yu H; Zhu J; Tian H; Gu Y
    J Food Sci; 2011 Oct; 76(8):C1125-35. PubMed ID: 22417575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and classification of Western Greek olive oils according to cultivar and geographical origin based on volatile compounds.
    Pouliarekou E; Badeka A; Tasioula-Margari M; Kontakos S; Longobardi F; Kontominas MG
    J Chromatogr A; 2011 Oct; 1218(42):7534-42. PubMed ID: 21871634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiles of volatile compounds from nine new hybrids obtained by controlled crossings on olive Chemlali cultivar and Mediterranean varieties.
    Rjiba I; Debbou S; Gazzah N; Chreif I; Hammami M
    Nat Prod Res; 2009; 23(7):622-32. PubMed ID: 19401916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Headspace solid phase microextraction and gas chromatography-quadrupole mass spectrometry methodology for analysis of volatile compounds of marine salt as potential origin biomarkers.
    Silva I; Rocha SM; Coimbra MA
    Anal Chim Acta; 2009 Mar; 635(2):167-74. PubMed ID: 19216874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic headspace solid-phase microextraction combined with one-dimensional gas chromatography-mass spectrometry as a powerful tool to differentiate banana cultivars based on their volatile metabolite profile.
    Pontes M; Pereira J; Câmara JS
    Food Chem; 2012 Oct; 134(4):2509-20. PubMed ID: 23442718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive two-dimensional gas chromatography for fingerprint pattern recognition in olive oils produced by two different techniques in Portuguese olive varieties Galega Vulgar, Cobrançosa e Carrasquenha.
    Vaz-Freire LT; da Silva MD; Freitas AM
    Anal Chim Acta; 2009 Feb; 633(2):263-70. PubMed ID: 19166732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volatile constituents of commercial imported and domestic black-ripe table olives (Olea europaea).
    Sansone-Land A; Takeoka GR; Shoemaker CF
    Food Chem; 2014 Apr; 149():285-95. PubMed ID: 24295708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of tropical fruit volatile compounds using solid-phase microextraction (SPME) fibers and internally cooled SPME fiber.
    Carasek E; Pawliszyn J
    J Agric Food Chem; 2006 Nov; 54(23):8688-96. PubMed ID: 17090108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of volatile compounds as markers in geographical discrimination of Spanish extra virgin olive oils by chemometric analysis of non-specific chromatography volatile profiles.
    Pizarro C; Rodríguez-Tecedor S; Pérez-del-Notario N; González-Sáiz JM
    J Chromatogr A; 2011 Jan; 1218(3):518-23. PubMed ID: 21163487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Olive Volatiles from Portuguese Cultivars Cobrançosa, Madural and Verdeal Transmontana: Role in Oviposition Preference of Bactrocera oleae (Rossi) (Diptera: Tephritidae).
    Malheiro R; Casal S; Cunha SC; Baptista P; Pereira JA
    PLoS One; 2015; 10(5):e0125070. PubMed ID: 25985460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry for the determination of volatile compounds from marine salt.
    Silva I; Rocha SM; Coimbra MA; Marriott PJ
    J Chromatogr A; 2010 Aug; 1217(34):5511-21. PubMed ID: 20633884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatolomics approach by HS-SPME-GC-MS and multivariate analysis to discriminate olive tree varieties infected by Xylella fastidiosa.
    Mentana A; Camele I; Mang SM; De Benedetto GE; Frisullo S; Centonze D
    Phytochem Anal; 2019 Nov; 30(6):623-634. PubMed ID: 31020714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.