BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 21448925)

  • 1. Regulation of reactive oxygen species in stem cells and cancer stem cells.
    Kobayashi CI; Suda T
    J Cell Physiol; 2012 Feb; 227(2):421-30. PubMed ID: 21448925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox regulation and its emerging roles in stem cells and stem-like cancer cells.
    Ogasawara MA; Zhang H
    Antioxid Redox Signal; 2009 May; 11(5):1107-22. PubMed ID: 18999985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species: current knowledge and applications in cancer research and therapeutic.
    Lau AT; Wang Y; Chiu JF
    J Cell Biochem; 2008 May; 104(2):657-67. PubMed ID: 18172854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic strategies by modulating oxygen stress in cancer and inflammation.
    Fang J; Seki T; Maeda H
    Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxyl radicals, redox-sensitive signalling cascades and antioxidants.
    Genestra M
    Cell Signal; 2007 Sep; 19(9):1807-19. PubMed ID: 17570640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metastasis: cancer cell's escape from oxidative stress.
    Pani G; Galeotti T; Chiarugi P
    Cancer Metastasis Rev; 2010 Jun; 29(2):351-78. PubMed ID: 20386957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes.
    Al-Gubory KH; Fowler PA; Garrel C
    Int J Biochem Cell Biol; 2010 Oct; 42(10):1634-50. PubMed ID: 20601089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer stem cells: an approach to identify newer therapeutic targets.
    Srivastava S; Krishna S
    J Stem Cells; 2009; 4(2):123-31. PubMed ID: 20232597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between oxygen concentration, reactive oxygen species and the biological characteristics of human bone marrow hematopoietic stem cells.
    Hao Y; Cheng D; Ma Y; Zhou W; Wang Y
    Transplant Proc; 2011 Sep; 43(7):2755-61. PubMed ID: 21911158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergy research: vitamins and secondary plant components in the maintenance of the redox-homeostasis and in cell signaling.
    Ulrich-Merzenich G; Zeitler H; Vetter H; Kraft K
    Phytomedicine; 2009 Jan; 16(1):2-16. PubMed ID: 19118991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Newborn neurons acquire high levels of reactive oxygen species and increased mitochondrial proteins upon differentiation from progenitors.
    Tsatmali M; Walcott EC; Crossin KL
    Brain Res; 2005 Apr; 1040(1-2):137-50. PubMed ID: 15804435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anticonvulsant valproic acid inhibits cardiomyocyte differentiation of embryonic stem cells by increasing intracellular levels of reactive oxygen species.
    Na L; Wartenberg M; Nau H; Hescheler J; Sauer H
    Birth Defects Res A Clin Mol Teratol; 2003 Mar; 67(3):174-80. PubMed ID: 12797459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A matter of balance between life and death: targeting reactive oxygen species (ROS)-induced autophagy for cancer therapy.
    Gibson SB
    Autophagy; 2010 Oct; 6(7):835-7. PubMed ID: 20818163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype.
    Kumar B; Koul S; Khandrika L; Meacham RB; Koul HK
    Cancer Res; 2008 Mar; 68(6):1777-85. PubMed ID: 18339858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species in melanoma and its therapeutic implications.
    Wittgen HG; van Kempen LC
    Melanoma Res; 2007 Dec; 17(6):400-9. PubMed ID: 17992124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox homeostasis in plants. The challenge of living with endogenous oxygen production.
    De Gara L; Locato V; Dipierro S; de Pinto MC
    Respir Physiol Neurobiol; 2010 Aug; 173 Suppl():S13-9. PubMed ID: 20188218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA and stem cell regulation.
    Wang Y; Russell I; Chen C
    Curr Opin Mol Ther; 2009 Jun; 11(3):292-8. PubMed ID: 19479662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.