BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21448996)

  • 1. Effects of an avidin-biotin binding system on Schwann cells attachment, proliferation, and gene expressions onto electrospun scaffolds.
    Feng S; Yan Z; Guo C; Chen Z; Zhang K; Mo X; Gu Y
    J Biomed Mater Res A; 2011 Jun; 97(3):321-9. PubMed ID: 21448996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibronectin and culture temperature modulate the efficacy of an avidin-biotin binding system for chondrocyte adhesion and growth on biodegradable polymers.
    Tsai WB; Wang PY; Chang Y; Wang MC
    Biotechnol Bioeng; 2007 Oct; 98(2):498-507. PubMed ID: 17385747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotin-conjugated anti-CD44 antibody-avidin binding system for the improvement of chondrocyte adhesion to scaffolds.
    Lin H; Zhou J; Shen L; Ruan Y; Dong J; Guo C; Chen Z
    J Biomed Mater Res A; 2014 Apr; 102(4):1140-8. PubMed ID: 23630032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of an avidin-biotin binding system on chondrocyte adhesion, growth and gene expression.
    Tsai WB; Wang MC
    Biomaterials; 2005 Jun; 26(16):3141-51. PubMed ID: 15603809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid hepatic cell attachment onto biodegradable polymer surfaces without toxicity using an avidin-biotin binding system.
    Kojima N; Matsuo T; Sakai Y
    Biomaterials; 2006 Oct; 27(28):4904-10. PubMed ID: 16759691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone Tissue Engineering by Using Calcium Phosphate Glass Scaffolds and the Avidin-Biotin Binding System.
    Kim MC; Hong MH; Lee BH; Choi HJ; Ko YM; Lee YK
    Ann Biomed Eng; 2015 Dec; 43(12):3004-14. PubMed ID: 26040755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging Schwann cells in vitro.
    Funk D; Fricke C; Schlosshauer B
    Eur J Cell Biol; 2007 Apr; 86(4):207-19. PubMed ID: 17307274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.
    Prabhakaran MP; Venugopal JR; Chyan TT; Hai LB; Chan CK; Lim AY; Ramakrishna S
    Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen I-matrigel scaffolds for enhanced Schwann cell survival and control of three-dimensional cell morphology.
    Dewitt DD; Kaszuba SN; Thompson DM; Stegemann JP
    Tissue Eng Part A; 2009 Oct; 15(10):2785-93. PubMed ID: 19231925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion and proliferation of human Schwann cells on adhesive coatings.
    Vleggeert-Lankamp CL; Pêgo AP; Lakke EA; Deenen M; Marani E; Thomeer RT
    Biomaterials; 2004 Jun; 25(14):2741-51. PubMed ID: 14962553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel nanofibrous spiral scaffolds for neural tissue engineering.
    Valmikinathan CM; Tian J; Wang J; Yu X
    J Neural Eng; 2008 Dec; 5(4):422-32. PubMed ID: 18971515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells.
    Carlberg B; Axell MZ; Nannmark U; Liu J; Kuhn HG
    Biomed Mater; 2009 Aug; 4(4):045004. PubMed ID: 19567936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting of vaccinia virus using biotin-avidin viral coating and biotinylated antibodies.
    Purow B; Staveley-O'Carroll K
    J Surg Res; 2005 Jan; 123(1):49-54. PubMed ID: 15652950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of biocompatibility of small intestinal submucosa (SIS) with Schwann cells in vitro.
    Su Y; Zeng BF; Zhang CQ; Zhang KG; Xie XT
    Brain Res; 2007 May; 1145():41-7. PubMed ID: 17367764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun scaffolds of a polyhydroxyalkanoate consisting of omega-hydroxylpentadecanoate repeat units: fabrication and in vitro biocompatibility studies.
    Focarete ML; Gualandi C; Scandola M; Govoni M; Giordano E; Foroni L; Valente S; Pasquinelli G; Gao W; Gross RA
    J Biomater Sci Polym Ed; 2010; 21(10):1283-96. PubMed ID: 20534185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun scaffold topography affects endothelial cell proliferation, metabolic activity, and morphology.
    Heath DE; Lannutti JJ; Cooper SL
    J Biomed Mater Res A; 2010 Sep; 94(4):1195-204. PubMed ID: 20694986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering.
    Liu H; Li X; Zhou G; Fan H; Fan Y
    Biomaterials; 2011 May; 32(15):3784-93. PubMed ID: 21376391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of transgene and cell type on the regeneration of adult retinal ganglion cell axons within reconstituted bridging grafts.
    Hu Y; Arulpragasam A; Plant GW; Hendriks WT; Cui Q; Harvey AR
    Exp Neurol; 2007 Oct; 207(2):314-28. PubMed ID: 17689533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun scaffolds from silk fibroin and their cellular compatibility.
    Zhang K; Mo X; Huang C; He C; Wang H
    J Biomed Mater Res A; 2010 Jun; 93(3):976-83. PubMed ID: 19722283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration.
    Subramanian A; Krishnan UM; Sethuraman S
    Biomed Mater; 2011 Apr; 6(2):025004. PubMed ID: 21301055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.