These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21448996)

  • 1. Effects of an avidin-biotin binding system on Schwann cells attachment, proliferation, and gene expressions onto electrospun scaffolds.
    Feng S; Yan Z; Guo C; Chen Z; Zhang K; Mo X; Gu Y
    J Biomed Mater Res A; 2011 Jun; 97(3):321-9. PubMed ID: 21448996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibronectin and culture temperature modulate the efficacy of an avidin-biotin binding system for chondrocyte adhesion and growth on biodegradable polymers.
    Tsai WB; Wang PY; Chang Y; Wang MC
    Biotechnol Bioeng; 2007 Oct; 98(2):498-507. PubMed ID: 17385747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotin-conjugated anti-CD44 antibody-avidin binding system for the improvement of chondrocyte adhesion to scaffolds.
    Lin H; Zhou J; Shen L; Ruan Y; Dong J; Guo C; Chen Z
    J Biomed Mater Res A; 2014 Apr; 102(4):1140-8. PubMed ID: 23630032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of an avidin-biotin binding system on chondrocyte adhesion, growth and gene expression.
    Tsai WB; Wang MC
    Biomaterials; 2005 Jun; 26(16):3141-51. PubMed ID: 15603809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid hepatic cell attachment onto biodegradable polymer surfaces without toxicity using an avidin-biotin binding system.
    Kojima N; Matsuo T; Sakai Y
    Biomaterials; 2006 Oct; 27(28):4904-10. PubMed ID: 16759691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone Tissue Engineering by Using Calcium Phosphate Glass Scaffolds and the Avidin-Biotin Binding System.
    Kim MC; Hong MH; Lee BH; Choi HJ; Ko YM; Lee YK
    Ann Biomed Eng; 2015 Dec; 43(12):3004-14. PubMed ID: 26040755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging Schwann cells in vitro.
    Funk D; Fricke C; Schlosshauer B
    Eur J Cell Biol; 2007 Apr; 86(4):207-19. PubMed ID: 17307274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.
    Prabhakaran MP; Venugopal JR; Chyan TT; Hai LB; Chan CK; Lim AY; Ramakrishna S
    Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen I-matrigel scaffolds for enhanced Schwann cell survival and control of three-dimensional cell morphology.
    Dewitt DD; Kaszuba SN; Thompson DM; Stegemann JP
    Tissue Eng Part A; 2009 Oct; 15(10):2785-93. PubMed ID: 19231925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion and proliferation of human Schwann cells on adhesive coatings.
    Vleggeert-Lankamp CL; Pêgo AP; Lakke EA; Deenen M; Marani E; Thomeer RT
    Biomaterials; 2004 Jun; 25(14):2741-51. PubMed ID: 14962553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel nanofibrous spiral scaffolds for neural tissue engineering.
    Valmikinathan CM; Tian J; Wang J; Yu X
    J Neural Eng; 2008 Dec; 5(4):422-32. PubMed ID: 18971515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells.
    Carlberg B; Axell MZ; Nannmark U; Liu J; Kuhn HG
    Biomed Mater; 2009 Aug; 4(4):045004. PubMed ID: 19567936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting of vaccinia virus using biotin-avidin viral coating and biotinylated antibodies.
    Purow B; Staveley-O'Carroll K
    J Surg Res; 2005 Jan; 123(1):49-54. PubMed ID: 15652950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of biocompatibility of small intestinal submucosa (SIS) with Schwann cells in vitro.
    Su Y; Zeng BF; Zhang CQ; Zhang KG; Xie XT
    Brain Res; 2007 May; 1145():41-7. PubMed ID: 17367764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun scaffolds of a polyhydroxyalkanoate consisting of omega-hydroxylpentadecanoate repeat units: fabrication and in vitro biocompatibility studies.
    Focarete ML; Gualandi C; Scandola M; Govoni M; Giordano E; Foroni L; Valente S; Pasquinelli G; Gao W; Gross RA
    J Biomater Sci Polym Ed; 2010; 21(10):1283-96. PubMed ID: 20534185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun scaffold topography affects endothelial cell proliferation, metabolic activity, and morphology.
    Heath DE; Lannutti JJ; Cooper SL
    J Biomed Mater Res A; 2010 Sep; 94(4):1195-204. PubMed ID: 20694986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering.
    Liu H; Li X; Zhou G; Fan H; Fan Y
    Biomaterials; 2011 May; 32(15):3784-93. PubMed ID: 21376391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of transgene and cell type on the regeneration of adult retinal ganglion cell axons within reconstituted bridging grafts.
    Hu Y; Arulpragasam A; Plant GW; Hendriks WT; Cui Q; Harvey AR
    Exp Neurol; 2007 Oct; 207(2):314-28. PubMed ID: 17689533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun scaffolds from silk fibroin and their cellular compatibility.
    Zhang K; Mo X; Huang C; He C; Wang H
    J Biomed Mater Res A; 2010 Jun; 93(3):976-83. PubMed ID: 19722283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration.
    Subramanian A; Krishnan UM; Sethuraman S
    Biomed Mater; 2011 Apr; 6(2):025004. PubMed ID: 21301055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.