These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21448997)

  • 1. Scaffold-based approach to direct stem cell neural and cardiovascular differentiation: an analysis of physical and biochemical effects.
    Chew SY; Low WC
    J Biomed Mater Res A; 2011 Jun; 97(3):355-74. PubMed ID: 21448997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment.
    Jiang X; Cao HQ; Shi LY; Ng SY; Stanton LW; Chew SY
    Acta Biomater; 2012 Mar; 8(3):1290-302. PubMed ID: 22154861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of glandular-derived stem cells to improve vascularization in scaffold-mediated dermal regeneration.
    Egaña JT; Danner S; Kremer M; Rapoport DH; Lohmeyer JA; Dye JF; Hopfner U; Lavandero S; Kruse C; Machens HG
    Biomaterials; 2009 Oct; 30(30):5918-26. PubMed ID: 19651436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring cellular adhesion and differentiation in a micro-/nano-hybrid polymer scaffold.
    Cheng K; Kisaalita WS
    Biotechnol Prog; 2010; 26(3):838-46. PubMed ID: 20196160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The performance of laminin-containing cryogel scaffolds in neural tissue regeneration.
    Jurga M; Dainiak MB; Sarnowska A; Jablonska A; Tripathi A; Plieva FM; Savina IN; Strojek L; Jungvid H; Kumar A; Lukomska B; Domanska-Janik K; Forraz N; McGuckin CP
    Biomaterials; 2011 May; 32(13):3423-34. PubMed ID: 21324403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell delivery therapeutics for musculoskeletal regeneration.
    Nöth U; Rackwitz L; Steinert AF; Tuan RS
    Adv Drug Deliv Rev; 2010 Jun; 62(7-8):765-83. PubMed ID: 20398712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered approaches to the stem cell microenvironment for cardiac tissue regeneration.
    Ghafar-Zadeh E; Waldeisen JR; Lee LP
    Lab Chip; 2011 Sep; 11(18):3031-48. PubMed ID: 21785806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels.
    Ma W; Fitzgerald W; Liu QY; O'Shaughnessy TJ; Maric D; Lin HJ; Alkon DL; Barker JL
    Exp Neurol; 2004 Dec; 190(2):276-88. PubMed ID: 15530869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adult stem cells, scaffolds for in vivo and in vitro myocardial tissue engineering.
    Di Felice V; De Luca A; Serradifalco C; Di Marco P; Verin L; Motta A; Guercio A; Zummo G
    Ital J Anat Embryol; 2010; 115(1-2):65-9. PubMed ID: 21072992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular regeneration: engineering the stem cell microenvironment.
    Sun G; Gerecht S
    Regen Med; 2009 May; 4(3):435-47. PubMed ID: 19438318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells.
    Carlberg B; Axell MZ; Nannmark U; Liu J; Kuhn HG
    Biomed Mater; 2009 Aug; 4(4):045004. PubMed ID: 19567936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stem cells: new cell source for myocardial constructs tissue engineering.
    Wu KH; Cui B; Yu CT; Liu YL
    Med Hypotheses; 2006; 67(6):1326-9. PubMed ID: 16814940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Important contribution and necessity of stem cells scaffolds for regenerative medicine and the therapeutic applications].
    Tabata Y
    Nihon Rinsho; 2008 May; 66(5):881-6. PubMed ID: 18464505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cells, scaffolds, and molecules for myocardial tissue engineering.
    Leor J; Amsalem Y; Cohen S
    Pharmacol Ther; 2005 Feb; 105(2):151-63. PubMed ID: 15670624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical cues of biomaterials guide stem cell differentiation fate.
    Higuchi A; Ling QD; Chang Y; Hsu ST; Umezawa A
    Chem Rev; 2013 May; 113(5):3297-328. PubMed ID: 23391258
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of neural stem cells on electrospun poly(epsilon-caprolactone) submicron scaffolds: evaluating their potential in neural tissue engineering.
    Nisbet DR; Yu LM; Zahir T; Forsythe JS; Shoichet MS
    J Biomater Sci Polym Ed; 2008; 19(5):623-34. PubMed ID: 18419941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem-cell-capturing collagen scaffold promotes cardiac tissue regeneration.
    Shi C; Li Q; Zhao Y; Chen W; Chen B; Xiao Z; Lin H; Nie L; Wang D; Dai J
    Biomaterials; 2011 Apr; 32(10):2508-15. PubMed ID: 21227504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-based scaffold designs for in situ vascular tissue engineering: controlling recruitment and differentiation behavior of endothelial colony forming cells.
    Fioretta ES; Fledderus JO; Burakowska-Meise EA; Baaijens FP; Verhaar MC; Bouten CV
    Macromol Biosci; 2012 May; 12(5):577-90. PubMed ID: 22566363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun scaffolds for stem cell engineering.
    Lim SH; Mao HQ
    Adv Drug Deliv Rev; 2009 Oct; 61(12):1084-96. PubMed ID: 19647024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the stem cell microenvironment.
    Metallo CM; Mohr JC; Detzel CJ; de Pablo JJ; Van Wie BJ; Palecek SP
    Biotechnol Prog; 2007; 23(1):18-23. PubMed ID: 17269664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.