BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21449320)

  • 21. Synthesis, characterization and biocompatibility of cadmium sulfide nanoparticles capped with dextrin for in vivo and in vitro imaging application.
    Reyes-Esparza J; Martínez-Mena A; Gutiérrez-Sancha I; Rodríguez-Fragoso P; de la Cruz GG; Mondragón R; Rodríguez-Fragoso L
    J Nanobiotechnology; 2015 Nov; 13():83. PubMed ID: 26577398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [R-phycoerythrin: a natural ligand for detoxifying cadmium ions and a tunnel matrix for synthesis of cadmium sulfide nanoparticles].
    Bekasova OD; Brekhovskikh AA; Brykina GD; Dubinchuk VT; Mochalova VS; Kotel'nikov AS
    Prikl Biokhim Mikrobiol; 2005; 41(3):308-14. PubMed ID: 15977792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative toxicity of physiological and biochemical parameters in Euglena gracilis to short-term exposure to potassium sorbate.
    Engel F; Pinto LH; Del Ciampo LF; Lorenzi L; Heyder CD; Häder DP; Erzinger GS
    Ecotoxicology; 2015 Jan; 24(1):153-62. PubMed ID: 25314908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toxicological impact of cadmium-based quantum dots towards aquatic biota: Effect of natural sunlight exposure.
    Silva BF; Andreani T; Gavina A; Vieira MN; Pereira CM; Rocha-Santos T; Pereira R
    Aquat Toxicol; 2016 Jul; 176():197-207. PubMed ID: 27162069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic determination of the size of cadmium sulfide nanoparticles formed under environmentally relevant conditions.
    Mullaugh KM; Luther GW
    J Environ Monit; 2010 Apr; 12(4):890-7. PubMed ID: 20383370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris.
    Bai HJ; Zhang ZM; Guo Y; Yang GE
    Colloids Surf B Biointerfaces; 2009 Apr; 70(1):142-6. PubMed ID: 19167198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biofabrication of morphology improved cadmium sulfide nanoparticles using Shewanella oneidensis bacterial cells and ionic liquid: For toxicity against brain cancer cell lines.
    Wang L; Chen S; Ding Y; Zhu Q; Zhang N; Yu S
    J Photochem Photobiol B; 2018 Jan; 178():424-427. PubMed ID: 29207279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Internalization of polystyrene microplastics in Euglena gracilis and its effects on the protozoan photosynthesis and motility.
    Sun L; Sun S; Bai M; Wang Z; Zhao Y; Huang Q; Hu C; Li X
    Aquat Toxicol; 2021 Jul; 236():105840. PubMed ID: 33945909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The cytotoxicity of endogenous CdS and Cd
    Cui D; Wang J; Wang H; Yang Y; Zhao M
    J Hazard Mater; 2021 May; 409():124485. PubMed ID: 33229266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative toxicity of Cd, Mo, and W sulphide nanomaterials toward E. coli under UV irradiation.
    Shang E; Niu J; Li Y; Zhou Y; Crittenden JC
    Environ Pollut; 2017 May; 224():606-614. PubMed ID: 28258860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA-passivated CdS nanocrystals: luminescence, bioimaging, and toxicity profiles.
    Ma N; Yang J; Stewart KM; Kelley SO
    Langmuir; 2007 Dec; 23(26):12783-7. PubMed ID: 17999543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum.
    Ahmad A; Mukherjee P; Mandal D; Senapati S; Khan MI; Kumar R; Sastry M
    J Am Chem Soc; 2002 Oct; 124(41):12108-9. PubMed ID: 12371846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triclosan toxicity in a model cyanobacterium (Anabaena flos-aquae): Growth, photosynthesis and transcriptomic response.
    Mo J; Han L; Lv R; Chiang MWL; Fan R; Guo J
    J Environ Sci (China); 2023 May; 127():82-90. PubMed ID: 36522109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different behavior of Staphylococcus epidermidis in intracellular biosynthesis of silver and cadmium sulfide nanoparticles: more stability and lower toxicity of extracted nanoparticles.
    Rezvani Amin Z; Khashyarmanesh Z; Fazly Bazzaz BS
    World J Microbiol Biotechnol; 2016 Sep; 32(9):140. PubMed ID: 27430507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous Cd2+, Zn2+, and Pb2+ uptake and accumulation by photosynthetic Euglena gracilis.
    Mendoza-Cózatl DG; Rangel-González E; Moreno-Sánchez R
    Arch Environ Contam Toxicol; 2006 Nov; 51(4):521-8. PubMed ID: 17009132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis.
    Hu C; Wang Q; Zhao H; Wang L; Guo S; Li X
    Chemosphere; 2015 Jun; 128():184-90. PubMed ID: 25703902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of monosulfuron on growth, photosynthesis, and nitrogenase activity of three nitrogen-fixing cyanobacteria.
    Shen J; Luo W
    Arch Environ Contam Toxicol; 2011 Jan; 60(1):34-43. PubMed ID: 20437038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of CdS nanoparticle necklaces with functionalized dendronized polymers.
    Zhang Y; Chen Y; Niu H; Gao M
    Small; 2006 Nov; 2(11):1314-9. PubMed ID: 17192979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical and behavioural responses of the marine polychaete Hediste diversicolor to cadmium sulfide quantum dots (CdS QDs): waterborne and dietary exposure.
    Buffet PE; Poirier L; Zalouk-Vergnoux A; Lopes C; Amiard JC; Gaudin P; Risso-de Faverney C; Guibbolini M; Gilliland D; Perrein-Ettajani H; Valsami-Jones E; Mouneyrac C
    Chemosphere; 2014 Apr; 100():63-70. PubMed ID: 24480429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Euglena gracilis cadmium-binding protein-II contains sulfide ion.
    Weber DN; Shaw CF; Petering DH
    J Biol Chem; 1987 May; 262(15):6962-4. PubMed ID: 3108245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.