These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21449339)

  • 1. Synthesis of flake-like MnO2/CNT composite nanotubes and their applications in electrochemical capacitors.
    Bi RR; Yin YX; Guo YG; Wan LJ
    J Nanosci Nanotechnol; 2011 Mar; 11(3):1996-2002. PubMed ID: 21449339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material.
    Kalathil S; Van Nguyen H; Shim JJ; Khan MM; Lee J; Cho MH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7712-6. PubMed ID: 24245320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of low-defect-density graphene/MnO2 composite and its electrochemical performance.
    He G; Yuan Y; Wang L; Chen H; Sun X; Wang X
    J Nanosci Nanotechnol; 2013 Jan; 13(1):487-92. PubMed ID: 23646759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunosensor based on carbon nanotube/manganese dioxide electrochemical tags.
    Tu MC; Chen HY; Wang Y; Moochhala SM; Alagappan P; Liedberg B
    Anal Chim Acta; 2015 Jan; 853():228-233. PubMed ID: 25467463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Synthesis of Graphene/MnO2 Nano-Composite for Application to Supercapacitor Electrode.
    Jeong KH; Lee HJ; Simpson MF; Jeong M
    J Nanosci Nanotechnol; 2016 May; 16(5):4620-5. PubMed ID: 27483800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors.
    Li GR; Feng ZP; Ou YN; Wu D; Fu R; Tong YX
    Langmuir; 2010 Feb; 26(4):2209-13. PubMed ID: 20067294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube fiber microelectrodes: design, characterization, and optimization.
    Viry L; Derré A; Garrigue P; Sojic N; Poulin P; Kuhn A
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3373-7. PubMed ID: 18330143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural in situ study of the thermal behavior of manganese dioxide materials: toward selected electrode materials for supercapacitors.
    Ghodbane O; Pascal JL; Fraisse B; Favier F
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3493-505. PubMed ID: 21114252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and characterization of tetragonal Mn3O4 nanowires.
    Xu C; Zhao X; Wang G
    J Nanosci Nanotechnol; 2003 Oct; 3(5):406-9. PubMed ID: 14733151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H2 uptake and synthesis of the Li-dispersed manganese oxide nanotubes.
    Lee JB; Lee SC; Kim HJ
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4033-6. PubMed ID: 18047112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode.
    Zhu G; He Z; Chen J; Zhao J; Feng X; Ma Y; Fan Q; Wang L; Huang W
    Nanoscale; 2014 Jan; 6(2):1079-85. PubMed ID: 24296659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors.
    Chou TC; Doong RA; Hu CC; Zhang B; Su DS
    ChemSusChem; 2014 Mar; 7(3):841-7. PubMed ID: 24504702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide-dispersed pristine CNTs support for MnO2 nanorods as high performance supercapacitor electrodes.
    You B; Li N; Zhu H; Zhu X; Yang J
    ChemSusChem; 2013 Mar; 6(3):474-80. PubMed ID: 23417925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode.
    Lei Z; Shi F; Lu L
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1058-64. PubMed ID: 22264121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-assisted assembly of carbon nanotubes and MnO2 nanospheres as electrodes for high-performance asymmetric supercapacitors.
    Guo CX; Chitre AA; Lu X
    Phys Chem Chem Phys; 2014 Mar; 16(10):4672-8. PubMed ID: 24469241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.
    Yuan L; Lu XH; Xiao X; Zhai T; Dai J; Zhang F; Hu B; Wang X; Gong L; Chen J; Hu C; Tong Y; Zhou J; Wang ZL
    ACS Nano; 2012 Jan; 6(1):656-61. PubMed ID: 22182051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnO(x) composites for high-performance energy storage devices.
    Kim JH; Lee KH; Overzet LJ; Lee GS
    Nano Lett; 2011 Jul; 11(7):2611-7. PubMed ID: 21661756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Antiviral Effects of Metal Oxides and Carbon Nanotubes.
    Gupta I; Azizighannad S; Farinas ET; Mitra S
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The controllable syntheses and electrochemical study of 1-dimensional nanowires, 2-dimensional nanoplatelets, and 3-dimensional nanotowers of MnO2.
    Yan DW; Wang CR
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2487-93. PubMed ID: 17663269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage.
    Liu R; Duay J; Lee SB
    ACS Nano; 2010 Jul; 4(7):4299-307. PubMed ID: 20590128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.