These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21449387)

  • 1. A carbonyl iron/carbon fiber material for electromagnetic wave absorption.
    Youh MJ; Wu HC; Lin WH; Chiu SC; Huang CF; Yu HC; Hsu JS; Li YY
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2315-20. PubMed ID: 21449387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3D α-Fe2O3 nanoflake urchin-like structure for electromagnetic wave absorption.
    Yu HC; Hsu LC; Chang TH; Li YY
    Dalton Trans; 2012 Jan; 41(3):723-6. PubMed ID: 21869983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.
    Ryu S; Mo CB; Lee H; Hong SH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7669-74. PubMed ID: 24245312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of multi-walled carbon nanocoils synthesized with Fe-Sn catalyst supported on zeolite.
    Yokota M; Suda Y; Takikawa H; Ue H; Shimizu K; Umeda Y
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2344-8. PubMed ID: 21449391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the synthesis and magnetic properties of multiwall carbon nanotube-superparamagnetic iron oxide nanoparticle nanocomposites.
    Narayanan TN; Mary AP; Shaijumon MM; Ci L; Ajayan PM; Anantharaman MR
    Nanotechnology; 2009 Feb; 20(5):055607. PubMed ID: 19417354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective optical property modification of double-walled carbon nanotubes by fluorination.
    Hayashi T; Shimamoto D; Kim YA; Muramatsu H; Okino F; Touhara H; Shimada T; Miyauchi Y; Maruyama S; Terrones M; Dresselhaus MS; Endo M
    ACS Nano; 2008 Mar; 2(3):485-8. PubMed ID: 19206574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property.
    Qian C; Qi H; Gao B; Cheng Y; Qiu Q; Qin LC; Zhou O; Liu J
    J Nanosci Nanotechnol; 2006 May; 6(5):1346-9. PubMed ID: 16792363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of catalyst thickness and plasma pretreatment on the growth of carbon nanotubes and their field emission properties.
    Uh HS; Park SS; Kim BW
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3731-5. PubMed ID: 18047047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-wall carbon nanotube latexes.
    Antonietti M; Shen Y; Nakanishi T; Manuelian M; Campbell R; Gwee L; Elabd YA; Tambe N; Crombez R; Texter J
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):649-53. PubMed ID: 20356263
    [No Abstract]   [Full Text] [Related]  

  • 10. A nucleation and growth model of vertically-oriented carbon nanofibers or nanotubes by plasma-enhanced catalytic chemical vapor deposition.
    Cojocaru CS; Senger A; Le Normand F
    J Nanosci Nanotechnol; 2006 May; 6(5):1331-8. PubMed ID: 16792361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Y-junction multibranched carbon nanofibers.
    Sharon M; Pradhan D
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1718-20. PubMed ID: 16245534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of deposition pressure on the morphology and structural properties of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Arendse CJ; Malgas GF; Scriba MR; Cummings FR; Knoesen D
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3638-42. PubMed ID: 18330185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of carbon nanotubes without iron inclusion and their alignment through ferrocene and ferrocene-ethylene pyrolysis.
    Awasthi K; Singh AK; Srivastava ON
    J Nanosci Nanotechnol; 2003 Dec; 3(6):540-4. PubMed ID: 15002137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotubes loaded with magnetic particles.
    Korneva G; Ye H; Gogotsi Y; Halverson D; Friedman G; Bradley JC; Kornev KG
    Nano Lett; 2005 May; 5(5):879-84. PubMed ID: 15884887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts.
    Yamada T; Namai T; Hata K; Futaba DN; Mizuno K; Fan J; Yudasaka M; Yumura M; Iijima S
    Nat Nanotechnol; 2006 Nov; 1(2):131-6. PubMed ID: 18654165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Shielding Performance of Layered Carbon Fiber Composites Filled with Carbonyl Iron and Carbon Nanotubes in the Koch Curve Fractal Method.
    Zhang H; Guo Y; Zhang X; Wang X; Wang H; Shi C; He F
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32098054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of carbon nanotubes.
    Awasthi K; Srivastava A; Srivastava ON
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1616-36. PubMed ID: 16245519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption.
    Kumar R; Choudhary HK; Pawar SP; Bose S; Sahoo B
    Phys Chem Chem Phys; 2017 Aug; 19(34):23268-23279. PubMed ID: 28825735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Growth of Core-Sheath Heterostructural SiC Nanowire Arrays on Carbon Fibers and Enhanced Electromagnetic Wave Absorption Performance.
    Yan L; Hong C; Sun B; Zhao G; Cheng Y; Dong S; Zhang D; Zhang X
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6320-6331. PubMed ID: 28120608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses.
    Wu N; Lv H; Liu J; Liu Y; Wang S; Liu W
    Phys Chem Chem Phys; 2016 Nov; 18(46):31542-31550. PubMed ID: 27831579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.