These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 21449398)
1. Significance and systematic analysis of metallic impurities of carbon nanotubes produced by different manufacturers. Ge C; Li W; Li Y; Li B; Du J; Qiu Y; Liu Y; Gao Y; Chai Z; Chen C J Nanosci Nanotechnol; 2011 Mar; 11(3):2389-97. PubMed ID: 21449398 [TBL] [Abstract][Full Text] [Related]
2. Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy. Ge C; Lao F; Li W; Li Y; Chen C; Qiu Y; Mao X; Li B; Chai Z; Zhao Y Anal Chem; 2008 Dec; 80(24):9426-34. PubMed ID: 18998708 [TBL] [Abstract][Full Text] [Related]
3. Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes. Kolodiazhnyi T; Pumera M Small; 2008 Sep; 4(9):1476-84. PubMed ID: 18680097 [TBL] [Abstract][Full Text] [Related]
4. Detection of Carbon Nanotubes in Indoor Workplaces Using Elemental Impurities. Rasmussen PE; Avramescu ML; Jayawardene I; Gardner HD Environ Sci Technol; 2015 Nov; 49(21):12888-96. PubMed ID: 26451679 [TBL] [Abstract][Full Text] [Related]
5. Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for "electrocatalytic" effect of carbon nanotubes. Pumera M; Iwai H Chem Asian J; 2009 Apr; 4(4):554-60. PubMed ID: 19235183 [TBL] [Abstract][Full Text] [Related]
6. Detection of single walled carbon nanotubes by monitoring embedded metals. Reed RB; Goodwin DG; Marsh KL; Capracotta SS; Higgins CP; Fairbrother DH; Ranville JF Environ Sci Process Impacts; 2013 Jan; 15(1):204-13. PubMed ID: 24592437 [TBL] [Abstract][Full Text] [Related]
7. Determination of inorganic contaminants in carbon nanotubes by plasma-based techniques: Overcoming the limitations of sample preparation. Krzyzaniak SR; Iop GD; Holkem AP; Flores EMM; Mello PA Talanta; 2019 Jan; 192():255-262. PubMed ID: 30348387 [TBL] [Abstract][Full Text] [Related]
8. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials. Dillon AC; Yudasaka M; Dresselhaus MS J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946 [TBL] [Abstract][Full Text] [Related]
9. What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties? Pumera M; Miyahara Y Nanoscale; 2009 Nov; 1(2):260-5. PubMed ID: 20644847 [TBL] [Abstract][Full Text] [Related]
10. An evaluation of microwave-assisted fusion and microwave-assisted acid digestion methods for determining elemental impurities in carbon nanostructures using inductively coupled plasma optical emission spectrometry. Patole SP; Simões F; Yapici TF; Warsama BH; Anjum DH; Costa PM Talanta; 2016 Feb; 148():94-100. PubMed ID: 26653428 [TBL] [Abstract][Full Text] [Related]
11. Metal impurities dominate the sorption of a commercially available carbon nanotube for Pb(II) from water. Tian X; Zhou S; Zhang Z; He X; Yu M; Lin D Environ Sci Technol; 2010 Nov; 44(21):8144-9. PubMed ID: 20919734 [TBL] [Abstract][Full Text] [Related]
12. Industrially synthesized single-walled carbon nanotubes: compositional data for users, environmental risk assessments, and source apportionment. Plata DL; Gschwend PM; Reddy CM Nanotechnology; 2008 May; 19(18):185706. PubMed ID: 21825702 [TBL] [Abstract][Full Text] [Related]
13. Direct growth of aligned carbon nanotubes on bulk metals. Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161 [TBL] [Abstract][Full Text] [Related]
14. Use of high-purity metal-catalyst-free multiwalled carbon nanotubes to avoid potential experimental misinterpretations. Jones CP; Jurkschat K; Crossley A; Compton RG; Riehl BL; Banks CE Langmuir; 2007 Aug; 23(18):9501-4. PubMed ID: 17655265 [TBL] [Abstract][Full Text] [Related]
15. Use of Raman spectroscopy to identify carbon nanotube contamination at an analytical balance workstation. Braun EI; Huang A; Tusa CA; Yukica MA; Pantano P J Occup Environ Hyg; 2016 Dec; 13(12):915-923. PubMed ID: 27224520 [TBL] [Abstract][Full Text] [Related]
16. Bioavailability of metallic impurities in carbon nanotubes is greatly enhanced by ultrasonication. Toh RJ; Ambrosi A; Pumera M Chemistry; 2012 Sep; 18(37):11593-6. PubMed ID: 22865345 [TBL] [Abstract][Full Text] [Related]
17. Purity evaluation of carbon nanotube materials by thermogravimetric, TEM, and SEM methods. Trigueiro JP; Silva GG; Lavall RL; Furtado CA; Oliveira S; Ferlauto AS; Lacerda RG; Ladeira LO; Liu JW; Frost RL; George GA J Nanosci Nanotechnol; 2007 Oct; 7(10):3477-86. PubMed ID: 18330161 [TBL] [Abstract][Full Text] [Related]
19. Redox-active nickel in carbon nanotubes and its direct determination. Ambrosi A; Pumera M Chemistry; 2012 Mar; 18(11):3338-44. PubMed ID: 22307929 [TBL] [Abstract][Full Text] [Related]
20. Regulatory peptides are susceptible to oxidation by metallic impurities within carbon nanotubes. Ambrosi A; Pumera M Chemistry; 2010 Feb; 16(6):1786-92. PubMed ID: 20066697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]