These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21449476)

  • 1. Phosphate adsorption on granular palygorskite: batch and column studies.
    Fangqun G; Jianmin Z; Huoyan W; Changwen D; Wenzhao Z; Xiaoqin C
    Water Environ Res; 2011 Feb; 83(2):147-53. PubMed ID: 21449476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layered double hydroxide (LDH)-coated attapulgite for phosphate removal from aqueous solution.
    Fang-qun G; Jian-min Z; Huo-yan W; Hong-ting Z
    Water Sci Technol; 2011; 64(11):2192-8. PubMed ID: 22156122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption-desorption of carbamazepine by palygorskite-montmorillonite (PM) filter medium.
    Berhane TM; Levy J; Krekeler MP; Danielson ND; Stalcup A
    J Hazard Mater; 2015 Jan; 282():183-93. PubMed ID: 25439731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite.
    Huang J; Wang X; Jin Q; Liu Y; Wang Y
    J Environ Manage; 2007 Jul; 84(2):229-36. PubMed ID: 16859824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of Hg2+ from aqueous solution onto polyacrylamide/attapulgite.
    Zhao Y; Chen Y; Li M; Zhou S; Xue A; Xing W
    J Hazard Mater; 2009 Nov; 171(1-3):640-6. PubMed ID: 19586714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite.
    Chen H; Zhao Y; Wang A
    J Hazard Mater; 2007 Oct; 149(2):346-54. PubMed ID: 17493750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of phosphate from aqueous solution by thermally treated natural palygorskite.
    Gan F; Zhou J; Wang H; Du C; Chen X
    Water Res; 2009 Jun; 43(11):2907-15. PubMed ID: 19447464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of lead from aqueous solution using superparamagnetic palygorskite nanocomposite: Material characterization and regeneration studies.
    Rusmin R; Sarkar B; Tsuzuki T; Kawashima N; Naidu R
    Chemosphere; 2017 Nov; 186():1006-1015. PubMed ID: 28838038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The adsorption of phosphate using a magnesia-pullulan composite: kinetics, equilibrium, and column tests.
    Ye Y; Jiao J; Kang D; Jiang W; Kang J; Ngo HH; Guo W; Liu Y
    Environ Sci Pollut Res Int; 2019 May; 26(13):13299-13310. PubMed ID: 30895548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient capture of phosphate from aqueous solution using acid activated akadama clay and mechanisms analysis.
    Wang Y; He H; Zhang N; Shimizu K; Lei Z; Zhang Z
    Water Sci Technol; 2018 Nov; 78(7):1603-1614. PubMed ID: 30427801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption and recovery of phosphate from water by amine fiber, effects of co-existing ions and column filtration.
    Wei J; Meng X; Wen X; Song Y
    J Environ Sci (China); 2020 Jan; 87():123-132. PubMed ID: 31791486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorptive characteristics of phosphate from aqueous solutions by MIEX resin.
    Ding L; Wu C; Deng H; Zhang X
    J Colloid Interface Sci; 2012 Jun; 376(1):224-32. PubMed ID: 22450053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple approach to fabricate granular adsorbent for adsorption of rare elements.
    Zhu Y; Zheng Y; Wang A
    Int J Biol Macromol; 2015 Jan; 72():410-20. PubMed ID: 25192856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of low concentrations of ammonium and humic acid from simulated groundwater by Vermiculite/Palygorskite mixture.
    Zhang X; Lv G; Liao L; He M; Li Z; Wang M
    Water Environ Res; 2012 Aug; 84(8):682-8. PubMed ID: 22953453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of cadmium from aqueous solutions by palygorskite.
    Alvarez-Ayuso E; García-Sánchez A
    J Hazard Mater; 2007 Aug; 147(1-2):594-600. PubMed ID: 17367922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Cd(II) from aqueous solution by a composite hydrogel based on attapulgite.
    Wang X; Wang A
    Environ Technol; 2010 Jun; 31(7):745-53. PubMed ID: 20586236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and thermodynamic studies of the Co(II) and Ni(II) ions removal from aqueous solutions by Ca-Mg phosphates.
    Ivanets AI; Srivastava V; Kitikova NV; Shashkova IL; Sillanpää M
    Chemosphere; 2017 Mar; 171():348-354. PubMed ID: 28038418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of cryptocrystalline magnesite/bentonite clay composite and its application for removal of phosphate from municipal wastewaters.
    Masindi V; Gitari WM; Pindihama KG
    Environ Technol; 2016; 37(5):603-12. PubMed ID: 26208531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate recovery with granular acid-activated neutralized red mud: Fixed-bed column performance and breakthrough curve modelling.
    Hu A; Ren G; Che J; Guo Y; Ye J; Zhou S
    J Environ Sci (China); 2020 Apr; 90():78-86. PubMed ID: 32081343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Methyl Violet from aqueous solutions using poly (acrylic acid-co-acrylamide)/attapulgite composite.
    Wang Y; Zeng L; Ren X; Song H; Wang A
    J Environ Sci (China); 2010; 22(1):7-14. PubMed ID: 20397381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.