These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 21449536)
1. Macropinocytosis is the major pathway responsible for DNA transfection in CHO cells by a charge-reversal amphiphile. Zhang XX; Allen PG; Grinstaff M Mol Pharm; 2011 Jun; 8(3):758-66. PubMed ID: 21449536 [TBL] [Abstract][Full Text] [Related]
2. Cholesterol-dependent macropinocytosis and endosomal escape control the transfection efficiency of lipoplexes in CHO living cells. Cardarelli F; Pozzi D; Bifone A; Marchini C; Caracciolo G Mol Pharm; 2012 Feb; 9(2):334-40. PubMed ID: 22196199 [TBL] [Abstract][Full Text] [Related]
3. Internalization of mRNA lipoplexes by dendritic cells. De Haes W; Van Mol G; Merlin C; De Smedt SC; Vanham G; Rejman J Mol Pharm; 2012 Oct; 9(10):2942-9. PubMed ID: 22894540 [TBL] [Abstract][Full Text] [Related]
4. Fluid phase endocytosis contributes to transfection of DNA by PEI-25. Hufnagel H; Hakim P; Lima A; Hollfelder F Mol Ther; 2009 Aug; 17(8):1411-7. PubMed ID: 19532143 [TBL] [Abstract][Full Text] [Related]
5. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Rejman J; Bragonzi A; Conese M Mol Ther; 2005 Sep; 12(3):468-74. PubMed ID: 15963763 [TBL] [Abstract][Full Text] [Related]
6. Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. Zuhorn IS; Kalicharan R; Hoekstra D J Biol Chem; 2002 May; 277(20):18021-8. PubMed ID: 11875062 [TBL] [Abstract][Full Text] [Related]
7. Ultrastructural Analysis of Vesicular Transport in Electrotransfection. Wang L; Miller SE; Yuan F Microsc Microanal; 2018 Oct; 24(5):553-563. PubMed ID: 30334512 [TBL] [Abstract][Full Text] [Related]
8. DNA internalized via caveolae requires microtubule-dependent, Rab7-independent transport to the late endocytic pathway for delivery to the nucleus. Wong AW; Scales SJ; Reilly DE J Biol Chem; 2007 Aug; 282(31):22953-63. PubMed ID: 17562704 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic evaluation of the transfection barriers involved in lipid-mediated gene delivery: interplay between nanostructure and composition. Pozzi D; Marchini C; Cardarelli F; Salomone F; Coppola S; Montani M; Zabaleta ME; Digman MA; Gratton E; Colapicchioni V; Caracciolo G Biochim Biophys Acta; 2014 Mar; 1838(3):957-67. PubMed ID: 24296066 [TBL] [Abstract][Full Text] [Related]
10. Macropinocytosis of polyplexes and recycling of plasmid via the clathrin-dependent pathway impair the transfection efficiency of human hepatocarcinoma cells. Gonçalves C; Mennesson E; Fuchs R; Gorvel JP; Midoux P; Pichon C Mol Ther; 2004 Aug; 10(2):373-85. PubMed ID: 15294184 [TBL] [Abstract][Full Text] [Related]
11. Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors. Douglas KL; Piccirillo CA; Tabrizian M Eur J Pharm Biopharm; 2008 Mar; 68(3):676-87. PubMed ID: 17945472 [TBL] [Abstract][Full Text] [Related]
12. Cell line-dependent internalization pathways determine DNA transfection efficiency of decaarginine-PEG-lipid. Izumisawa T; Hattori Y; Date M; Toma K; Maitani Y Int J Pharm; 2011 Feb; 404(1-2):264-70. PubMed ID: 21093557 [TBL] [Abstract][Full Text] [Related]
13. Factors influencing the transfection efficiency and cellular uptake mechanisms of Pluronic P123-modified polypropyleneimine/pDNA polyplexes in multidrug resistant breast cancer cells. Gu J; Hao J; Fang X; Sha X Colloids Surf B Biointerfaces; 2016 Apr; 140():83-93. PubMed ID: 26741268 [TBL] [Abstract][Full Text] [Related]
14. Beta-arrestin- and dynamin-dependent endocytosis of the AT1 angiotensin receptor. Gáborik Z; Szaszák M; Szidonya L; Balla B; Paku S; Catt KJ; Clark AJ; Hunyady L Mol Pharmacol; 2001 Feb; 59(2):239-47. PubMed ID: 11160859 [TBL] [Abstract][Full Text] [Related]
15. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. van der Aa MA; Huth US; Häfele SY; Schubert R; Oosting RS; Mastrobattista E; Hennink WE; Peschka-Süss R; Koning GA; Crommelin DJ Pharm Res; 2007 Aug; 24(8):1590-8. PubMed ID: 17385010 [TBL] [Abstract][Full Text] [Related]
16. Endocytosis of oxidized low density lipoprotein through scavenger receptor CD36 utilizes a lipid raft pathway that does not require caveolin-1. Zeng Y; Tao N; Chung KN; Heuser JE; Lublin DM J Biol Chem; 2003 Nov; 278(46):45931-6. PubMed ID: 12947091 [TBL] [Abstract][Full Text] [Related]
17. Intracellular fate of octaarginine-modified liposomes in polarized MDCK cells. Fujiwara T; Akita H; Harashima H Int J Pharm; 2010 Feb; 386(1-2):122-30. PubMed ID: 19922779 [TBL] [Abstract][Full Text] [Related]
18. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Qaddoumi MG; Gukasyan HJ; Davda J; Labhasetwar V; Kim KJ; Lee VH Mol Vis; 2003 Oct; 9():559-68. PubMed ID: 14566223 [TBL] [Abstract][Full Text] [Related]
19. Revealing macropinocytosis using nanoparticles. Means N; Elechalawar CK; Chen WR; Bhattacharya R; Mukherjee P Mol Aspects Med; 2022 Feb; 83():100993. PubMed ID: 34281720 [TBL] [Abstract][Full Text] [Related]
20. Endocytic uptake of a large array of HPMA copolymers: Elucidation into the dependence on the physicochemical characteristics. Liu J; Bauer H; Callahan J; Kopecková P; Pan H; Kopecek J J Control Release; 2010 Apr; 143(1):71-9. PubMed ID: 20043962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]