These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 21449539)
1. Native electrospray mass spectrometry reveals the nature and stoichiometry of pigments in the FMO photosynthetic antenna protein. Wen J; Zhang H; Gross ML; Blankenship RE Biochemistry; 2011 May; 50(17):3502-11. PubMed ID: 21449539 [TBL] [Abstract][Full Text] [Related]
2. Structural model and spectroscopic characteristics of the FMO antenna protein from the aerobic chlorophototroph, Candidatus Chloracidobacterium thermophilum. Wen J; Tsukatani Y; Cui W; Zhang H; Gross ML; Bryant DA; Blankenship RE Biochim Biophys Acta; 2011 Jan; 1807(1):157-64. PubMed ID: 20875391 [TBL] [Abstract][Full Text] [Related]
3. Predictive First-Principles Modeling of a Photosynthetic Antenna Protein: The Fenna-Matthews-Olson Complex. Kim Y; Morozov D; Stadnytskyi V; Savikhin S; Slipchenko LV J Phys Chem Lett; 2020 Mar; 11(5):1636-1643. PubMed ID: 32013435 [TBL] [Abstract][Full Text] [Related]
4. Reinterpretation of the electron density at the site of the eighth bacteriochlorophyll in the FMO protein from Pelodictyon phaeum. Tronrud DE; Allen JP Photosynth Res; 2012 Apr; 112(1):71-4. PubMed ID: 22457093 [TBL] [Abstract][Full Text] [Related]
5. The influence of quaternary structure on the stability of Fenna-Matthews-Olson (FMO) antenna complexes. Saer RG; Schultz RL; Blankenship RE Photosynth Res; 2019 Apr; 140(1):39-49. PubMed ID: 30315435 [TBL] [Abstract][Full Text] [Related]
6. Characterization of an FMO variant of Chlorobaculum tepidum carrying bacteriochlorophyll a esterified by geranylgeraniol. Wen J; Harada J; Buyle K; Yuan K; Tamiaki H; Oh-Oka H; Loomis RA; Blankenship RE Biochemistry; 2010 Jul; 49(26):5455-63. PubMed ID: 20521767 [TBL] [Abstract][Full Text] [Related]
7. Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex. Yeh SH; Kais S J Chem Phys; 2014 Dec; 141(23):234105. PubMed ID: 25527917 [TBL] [Abstract][Full Text] [Related]
8. Perturbation of bacteriochlorophyll molecules in Fenna-Matthews-Olson protein complexes through mutagenesis of cysteine residues. Saer R; Orf GS; Lu X; Zhang H; Cuneo MJ; Myles DAA; Blankenship RE Biochim Biophys Acta; 2016 Sep; 1857(9):1455-1463. PubMed ID: 27114180 [TBL] [Abstract][Full Text] [Related]
9. On uncorrelated inter-monomer Förster energy transfer in Fenna-Matthews-Olson complexes. Kell A; Khmelnitskiy AY; Reinot T; Jankowiak R J R Soc Interface; 2019 Feb; 16(151):20180882. PubMed ID: 30958204 [TBL] [Abstract][Full Text] [Related]
10. Energy landscape of the intact and destabilized FMO antennas from C. tepidum and the L122Q mutant: Low temperature spectroscopy and modeling study. Khmelnitskiy A; Kell A; Reinot T; Saer RG; Blankenship RE; Jankowiak R Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):165-173. PubMed ID: 29198987 [TBL] [Abstract][Full Text] [Related]
11. Ultrafast Spectroscopic Investigation of Energy Transfer in Site-Directed Mutants of the Fenna-Matthews-Olson (FMO) Antenna Complex from Chlorobaculum tepidum. Magdaong NCM; Saer RG; Niedzwiedzki DM; Blankenship RE J Phys Chem B; 2017 May; 121(18):4700-4712. PubMed ID: 28422512 [TBL] [Abstract][Full Text] [Related]
12. Probing the excitonic landscape of the Chlorobaculum tepidum Fenna-Matthews-Olson (FMO) complex: a mutagenesis approach. Saer RG; Stadnytskyi V; Magdaong NC; Goodson C; Savikhin S; Blankenship RE Biochim Biophys Acta Bioenerg; 2017 Apr; 1858(4):288-296. PubMed ID: 28159567 [TBL] [Abstract][Full Text] [Related]
13. FMOxFMO: Elucidating Excitonic Interactions in the Fenna-Matthews-Olson Complex with the Fragment Molecular Orbital Method. Kaliakin DS; Nakata H; Kim Y; Chen Q; Fedorov DG; Slipchenko LV J Chem Theory Comput; 2020 Feb; 16(2):1175-1187. PubMed ID: 31841349 [TBL] [Abstract][Full Text] [Related]
14. Chemical oxidation of the FMO antenna protein from Chlorobaculum tepidum. Bina D; Blankenship RE Photosynth Res; 2013 Sep; 116(1):11-9. PubMed ID: 23828400 [TBL] [Abstract][Full Text] [Related]
15. The three-dimensional structure of the FMO protein from Pelodictyon phaeum and the implications for energy transfer. Larson CR; Seng CO; Lauman L; Matthies HJ; Wen J; Blankenship RE; Allen JP Photosynth Res; 2011 Feb; 107(2):139-50. PubMed ID: 21181557 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Evaluation of Site Energies and Their Fluctuations of Pigments in the Fenna-Matthews-Olson Complex with an Efficient Method for Generating a Potential Energy Surface. Higashi M; Saito S J Chem Theory Comput; 2016 Aug; 12(8):4128-37. PubMed ID: 27385191 [TBL] [Abstract][Full Text] [Related]
17. Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Wen J; Zhang H; Gross ML; Blankenship RE Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6134-9. PubMed ID: 19339500 [TBL] [Abstract][Full Text] [Related]
18. The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Tronrud DE; Wen J; Gay L; Blankenship RE Photosynth Res; 2009 May; 100(2):79-87. PubMed ID: 19437128 [TBL] [Abstract][Full Text] [Related]
19. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Adolphs J; Renger T Biophys J; 2006 Oct; 91(8):2778-97. PubMed ID: 16861264 [TBL] [Abstract][Full Text] [Related]
20. Multipartite entanglement in the Fenna-Matthews-Olson (FMO) pigment-protein complex. Thilagam A J Chem Phys; 2012 May; 136(17):175104. PubMed ID: 22583269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]