These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 21449588)

  • 1. Microfluidic fabrication of asymmetric giant lipid vesicles.
    Hu PC; Li S; Malmstadt N
    ACS Appl Mater Interfaces; 2011 May; 3(5):1434-40. PubMed ID: 21449588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions.
    Maktabi S; Malmstadt N; Schertzer JW; Chiarot PR
    Biomicrofluidics; 2021 Mar; 15(2):024112. PubMed ID: 33912267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric giant lipid vesicle fabrication.
    Hu PC; Malmstadt N
    Methods Mol Biol; 2015; 1232():79-90. PubMed ID: 25331129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane Structure-Function Insights from Asymmetric Lipid Vesicles.
    London E
    Acc Chem Res; 2019 Aug; 52(8):2382-2391. PubMed ID: 31386337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer-by-layer cell membrane assembly.
    Matosevic S; Paegel BM
    Nat Chem; 2013 Nov; 5(11):958-63. PubMed ID: 24153375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dewetting-induced formation and mechanical properties of synthetic bacterial outer membrane models (GUVs) with controlled inner-leaflet lipid composition.
    Maktabi S; Schertzer JW; Chiarot PR
    Soft Matter; 2019 May; 15(19):3938-3948. PubMed ID: 31011738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous microfluidic fabrication of synthetic asymmetric vesicles.
    Lu L; Schertzer JW; Chiarot PR
    Lab Chip; 2015 Sep; 15(17):3591-9. PubMed ID: 26220822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated formation of multicomponent-encapuslating vesosomes using continuous flow microcentrifugation.
    Jang H; Hu PC; Jung S; Kim WY; Kim SM; Malmstadt N; Jeon TJ
    Biotechnol J; 2013 Nov; 8(11):1341-6. PubMed ID: 23894035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of hemifusion to create asymmetric giant unilamellar vesicles: Insights on induced order domains.
    Enoki TA
    Methods Enzymol; 2024; 700():127-159. PubMed ID: 38971598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly methods for asymmetric lipid and polymer-lipid vesicles.
    Huang Y
    Emerg Top Life Sci; 2022 Dec; 6(6):609-617. PubMed ID: 36533596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line.
    Matosevic S; Paegel BM
    J Am Chem Soc; 2011 Mar; 133(9):2798-800. PubMed ID: 21309555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Phosphatidylserine Containing Asymmetric Giant Unilamellar Vesicles.
    McDonough J; Paratore TA; Ketelhohn HM; DeCilio BC; Ross AH; Gericke A
    Membranes (Basel); 2024 Aug; 14(9):. PubMed ID: 39330522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilayer Charge Asymmetry and Oil Residues Destabilize Membranes upon Poration.
    Leomil FSC; Stephan M; Pramanik S; Riske KA; Dimova R
    Langmuir; 2024 Mar; 40(9):4719-4731. PubMed ID: 38373285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inner leaflet cationic lipid increases nucleic acid loading independently of outer leaflet lipid charge in asymmetric liposomes.
    Li B; London E
    Methods; 2023 Nov; 219():16-21. PubMed ID: 37683900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triacylglycerol-droplet-induced bilayer spontaneous curvature in giant unilamellar vesicles.
    Kataoka-Hamai C
    Biophys J; 2024 Jul; 123(13):1857-1868. PubMed ID: 38822522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots.
    Park YH; Lee DH; Um E; Park JK
    Electrophoresis; 2016 May; 37(10):1353-8. PubMed ID: 26920999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Encapsulation of Reconstituted Cytoskeleton Inside Giant Unilamellar Vesicles.
    Bashirzadeh Y; Wubshet N; Litschel T; Schwille P; Liu AP
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet-Shooting and Size-Filtration (DSSF) Method for Synthesis of Cell-Sized Liposomes with Controlled Lipid Compositions.
    Morita M; Onoe H; Yanagisawa M; Ito H; Ichikawa M; Fujiwara K; Saito H; Takinoue M
    Chembiochem; 2015 Sep; 16(14):2029-35. PubMed ID: 26212462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.