These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21449613)

  • 1. Solution NMR insights into docking interactions involving inactive ERK2.
    Piserchio A; Warthaka M; Devkota AK; Kaoud TS; Lee S; Abramczyk O; Ren P; Dalby KN; Ghose R
    Biochemistry; 2011 May; 50(18):3660-72. PubMed ID: 21449613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local destabilization, rigid body, and fuzzy docking facilitate the phosphorylation of the transcription factor Ets-1 by the mitogen-activated protein kinase ERK2.
    Piserchio A; Warthaka M; Kaoud TS; Callaway K; Dalby KN; Ghose R
    Proc Natl Acad Sci U S A; 2017 Aug; 114(31):E6287-E6296. PubMed ID: 28716922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining docking interactions on ERK2 with modular peptide substrates.
    Lee S; Warthaka M; Yan C; Kaoud TS; Ren P; Dalby KN
    Biochemistry; 2011 Nov; 50(44):9500-10. PubMed ID: 21955038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docking interactions of hematopoietic tyrosine phosphatase with MAP kinases ERK2 and p38α.
    Piserchio A; Francis DM; Koveal D; Dalby KN; Page R; Peti W; Ghose R
    Biochemistry; 2012 Oct; 51(41):8047-9. PubMed ID: 23030599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of ERK2 interactions with substrate proteins: roles for kinase docking domains and activity in determining binding affinity.
    Burkhard KA; Chen F; Shapiro P
    J Biol Chem; 2011 Jan; 286(4):2477-85. PubMed ID: 21098038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Class of Common Docking Domain Inhibitors That Prevent ERK2 Activation and Substrate Phosphorylation.
    Sammons RM; Perry NA; Li Y; Cho EJ; Piserchio A; Zamora-Olivares DP; Ghose R; Kaoud TS; Debevec G; Bartholomeusz C; Gurevich VV; Iverson TM; Giulianotti M; Houghten RA; Dalby KN
    ACS Chem Biol; 2019 Jun; 14(6):1183-1194. PubMed ID: 31058487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates.
    Zhang J; Zhou B; Zheng CF; Zhang ZY
    J Biol Chem; 2003 Aug; 278(32):29901-12. PubMed ID: 12754209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Docking interactions induce exposure of activation loop in the MAP kinase ERK2.
    Zhou T; Sun L; Humphreys J; Goldsmith EJ
    Structure; 2006 Jun; 14(6):1011-9. PubMed ID: 16765894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3.
    Liu S; Sun JP; Zhou B; Zhang ZY
    Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5326-31. PubMed ID: 16567630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
    Bardwell AJ; Abdollahi M; Bardwell L
    Biochem J; 2003 Mar; 370(Pt 3):1077-85. PubMed ID: 12529172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profound conformational changes of PED/PEA-15 in ERK2 complex revealed by NMR backbone dynamics.
    Twomey EC; Cordasco DF; Wei Y
    Biochim Biophys Acta; 2012 Dec; 1824(12):1382-93. PubMed ID: 22820249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of PTP-SL/PTPBR7 catalytic domain: implications for MAP kinase regulation.
    Szedlacsek SE; Aricescu AR; Fulga TA; Renault L; Scheidig AJ
    J Mol Biol; 2001 Aug; 311(3):557-68. PubMed ID: 11493009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The anti-apoptotic protein PEA-15 is a tight binding inhibitor of ERK1 and ERK2, which blocks docking interactions at the D-recruitment site.
    Callaway K; Abramczyk O; Martin L; Dalby KN
    Biochemistry; 2007 Aug; 46(32):9187-98. PubMed ID: 17658892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-peptide complex crystallization: a case study on the ERK2 mitogen-activated protein kinase.
    Gógl G; Törő I; Reményi A
    Acta Crystallogr D Biol Crystallogr; 2013 Mar; 69(Pt 3):486-9. PubMed ID: 23519423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique MAP Kinase binding sites.
    Akella R; Moon TM; Goldsmith EJ
    Biochim Biophys Acta; 2008 Jan; 1784(1):48-55. PubMed ID: 18068683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation loop dynamics are controlled by conformation-selective inhibitors of ERK2.
    Pegram LM; Liddle JC; Xiao Y; Hoh M; Rudolph J; Iverson DB; Vigers GP; Smith D; Zhang H; Wang W; Moffat JG; Ahn NG
    Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15463-15468. PubMed ID: 31311868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two clusters of residues at the docking groove of mitogen-activated protein kinases differentially mediate their functional interaction with the tyrosine phosphatases PTP-SL and STEP.
    Tárrega C; Blanco-Aparicio C; Muñoz JJ; Pulido R
    J Biol Chem; 2002 Jan; 277(4):2629-36. PubMed ID: 11711538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of a cysteine residue in the active site of ERK and the MAPKK family.
    Ohori M; Kinoshita T; Yoshimura S; Warizaya M; Nakajima H; Miyake H
    Biochem Biophys Res Commun; 2007 Feb; 353(3):633-7. PubMed ID: 17194451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and biochemical characterization of small molecule inhibitors of ERK2 that target the D-recruitment site.
    Sammons RM; Cho EJ; Dalby KN
    Methods Enzymol; 2023; 690():445-499. PubMed ID: 37858538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of phosphorylated p38gamma is monomeric and reveals a conserved activation-loop conformation.
    Bellon S; Fitzgibbon MJ; Fox T; Hsiao HM; Wilson KP
    Structure; 1999 Sep; 7(9):1057-65. PubMed ID: 10508788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.