BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 21449664)

  • 21. Objectives and mechanism of iron chelation therapy.
    Hershko C; Link G; Konijn AM; Cabantchik ZI
    Ann N Y Acad Sci; 2005; 1054():124-35. PubMed ID: 16339658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ethical issues and risk/benefit assessment of iron chelation therapy: advances with deferiprone/deferoxamine combinations and concerns about the safety, efficacy and costs of deferasirox.
    Kontoghiorghes GJ
    Hemoglobin; 2008; 32(1-2):1-15. PubMed ID: 18274978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurodegenerative diseases and therapeutic strategies using iron chelators.
    Ward RJ; Dexter DT; Crichton RR
    J Trace Elem Med Biol; 2015; 31():267-73. PubMed ID: 25716300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition.
    Zheng H; Gal S; Weiner LM; Bar-Am O; Warshawsky A; Fridkin M; Youdim MB
    J Neurochem; 2005 Oct; 95(1):68-78. PubMed ID: 16181413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chelating agents for the treatment of systemic iron overload.
    Ma Y; Zhou T; Kong X; Hider RC
    Curr Med Chem; 2012; 19(17):2816-27. PubMed ID: 22455586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective new treatments of iron overload in thalassaemia using the ICOC combination therapy protocol of deferiprone (L1) and deferoxamine and of new chelating drugs.
    Kontoghiorghes GJ; Kolnagou A
    Haematologica; 2006 Jun; 91(6 Suppl):ELT04. PubMed ID: 16785141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new era in iron chelation therapy: the design of optimal, individually adjusted iron chelation therapies for the complete removal of iron overload in thalassemia and other chronically transfused patients.
    Kontoghiorghes GJ
    Hemoglobin; 2009; 33(5):332-8. PubMed ID: 19814679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anti-HIV effect of iron chelators: different mechanisms involved.
    van Asbeck BS; Georgiou NA; van der Bruggen T; Oudshoorn M; Nottet HS; Marx JJ
    J Clin Virol; 2001 Feb; 20(3):141-7. PubMed ID: 11166663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deferasirox: pharmacokinetics and clinical experience.
    Galanello R; Campus S; Origa R
    Expert Opin Drug Metab Toxicol; 2012 Jan; 8(1):123-34. PubMed ID: 22176640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternative treatment paradigm for thalassemia using iron chelators.
    Szuber N; Buss JL; Soe-Lin S; Felfly H; Trudel M; Ponka P
    Exp Hematol; 2008 Jul; 36(7):773-85. PubMed ID: 18456387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron mobilization using chelation and phlebotomy.
    Flaten TP; Aaseth J; Andersen O; Kontoghiorghes GJ
    J Trace Elem Med Biol; 2012 Jun; 26(2-3):127-30. PubMed ID: 22565013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuroprotective multifunctional iron chelators: from redox-sensitive process to novel therapeutic opportunities.
    Weinreb O; Amit T; Mandel S; Kupershmidt L; Youdim MB
    Antioxid Redox Signal; 2010 Sep; 13(6):919-49. PubMed ID: 20095867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential of iron chelators as effective antiproliferative agents.
    Richardson DR
    Can J Physiol Pharmacol; 1997; 75(10-11):1164-80. PubMed ID: 9431440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of iron chelation in cancer therapy.
    Buss JL; Torti FM; Torti SV
    Curr Med Chem; 2003 Jun; 10(12):1021-34. PubMed ID: 12678674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathogenesis and management of iron toxicity in thalassemia.
    Hershko C
    Ann N Y Acad Sci; 2010 Aug; 1202():1-9. PubMed ID: 20712765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new approach for potential combined chelation therapy using mono- and bis-hydroxypyridinones.
    Santos MA; Gama S; Gil M; Gano L
    Hemoglobin; 2008; 32(1-2):147-56. PubMed ID: 18274992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel therapeutic approach for neurodegenerative pathologies: multitarget iron-chelating drugs regulating hypoxia-inducible factor 1 signal transduction pathway.
    Weinreb O; Amit T; Mandel S; Youdim MB
    Neurodegener Dis; 2012; 10(1-4):112-5. PubMed ID: 22156453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydroxypyridinone-Based Iron Chelators with Broad-Ranging Biological Activities.
    Jiang X; Zhou T; Bai R; Xie Y
    J Med Chem; 2020 Dec; 63(23):14470-14501. PubMed ID: 33023291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron mobilization from transferrin and non-transferrin-bound-iron by deferiprone. Implications in the treatment of thalassemia, anemia of chronic disease, cancer and other conditions.
    Kontoghiorghes GJ
    Hemoglobin; 2006; 30(2):183-200. PubMed ID: 16798643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron overload in thalassemia and related conditions: therapeutic goals and assessment of response to chelation therapies.
    Porter JB; Shah FT
    Hematol Oncol Clin North Am; 2010 Dec; 24(6):1109-30. PubMed ID: 21075283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.