These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 21450461)

  • 21. Textural development of sugar beet bagasse activated with ZnCl2.
    Onal Y; Akmil-Başar C; Sarici-Ozdemir C; Erdoğan S
    J Hazard Mater; 2007 Apr; 142(1-2):138-43. PubMed ID: 16982141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Copper removal from aqueous solutions by sugar beet pulp treated by NaOH and citric acid.
    Altundogan HS; Arslan NE; Tumen F
    J Hazard Mater; 2007 Oct; 149(2):432-9. PubMed ID: 17499920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents.
    Boujelben N; Bouzid J; Elouear Z; Feki M; Jamoussi F; Montiel A
    J Hazard Mater; 2008 Feb; 151(1):103-10. PubMed ID: 17611022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research on the characteristics of red mud granular adsorbents (RMGA) for phosphate removal.
    Yue Q; Zhao Y; Li Q; Li W; Gao B; Han S; Qi Y; Yu H
    J Hazard Mater; 2010 Apr; 176(1-3):741-8. PubMed ID: 20006430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosorption characteristics of phosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers.
    Riahi K; Thayer BB; Mammou AB; Ammar AB; Jaafoura MH
    J Hazard Mater; 2009 Oct; 170(2-3):511-9. PubMed ID: 19497666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash.
    Pehlivan E; Cetin S; Yanik BH
    J Hazard Mater; 2006 Jul; 135(1-3):193-9. PubMed ID: 16368188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphate removal from solution using steel slag through magnetic separation.
    Xiong J; He Z; Mahmood Q; Liu D; Yang X; Islam E
    J Hazard Mater; 2008 Mar; 152(1):211-5. PubMed ID: 17703877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of chemically engineered porous metal oxides for phosphate removal.
    Delaney P; McManamon C; Hanrahan JP; Copley MP; Holmes JD; Morris MA
    J Hazard Mater; 2011 Jan; 185(1):382-91. PubMed ID: 20934247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash.
    Li Y; Liu C; Luan Z; Peng X; Zhu C; Chen Z; Zhang Z; Fan J; Jia Z
    J Hazard Mater; 2006 Sep; 137(1):374-83. PubMed ID: 16621271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass.
    Liu Z; Zhang FS
    J Hazard Mater; 2009 Aug; 167(1-3):933-9. PubMed ID: 19261383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance evaluation of low cost adsorbents in reduction of COD in sugar industrial effluent.
    Parande AK; Sivashanmugam A; Beulah H; Palaniswamy N
    J Hazard Mater; 2009 Sep; 168(2-3):800-5. PubMed ID: 19304388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochar and enhanced phosphate capture: Mapping mechanisms to functional properties.
    Shepherd JG; Joseph S; Sohi SP; Heal KV
    Chemosphere; 2017 Jul; 179():57-74. PubMed ID: 28364649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphate removal from wastewater using red mud.
    Huang W; Wang S; Zhu Z; Li L; Yao X; Rudolph V; Haghseresht F
    J Hazard Mater; 2008 Oct; 158(1):35-42. PubMed ID: 18314264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective adsorption behavior of phosphate onto aluminum hydroxide gel.
    Kawasaki N; Ogata F; Tominaga H
    J Hazard Mater; 2010 Sep; 181(1-3):574-9. PubMed ID: 20605321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and characterization of porous granular ceramic containing dispersed aluminum and iron oxides as adsorbents for fluoride removal from aqueous solution.
    Chen N; Zhang Z; Feng C; Zhu D; Yang Y; Sugiura N
    J Hazard Mater; 2011 Feb; 186(1):863-8. PubMed ID: 21168269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitrogen doped char from anaerobically digested fiber for phosphate removal in aqueous solutions.
    Mood SH; Ayiania M; Jefferson-Milan Y; Garcia-Perez M
    Chemosphere; 2020 Feb; 240():124889. PubMed ID: 31563102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles.
    Qian L; Chen B
    Environ Sci Technol; 2013 Aug; 47(15):8759-68. PubMed ID: 23826729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of pH and dissolved oxygen on Cr(VI) removal in Fe(0)/H2O systems.
    Yoon IH; Bang S; Chang JS; Gyu Kim M; Kim KW
    J Hazard Mater; 2011 Feb; 186(1):855-62. PubMed ID: 21163574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential.
    Yao Y; Gao B; Chen J; Zhang M; Inyang M; Li Y; Alva A; Yang L
    Bioresour Technol; 2013 Jun; 138():8-13. PubMed ID: 23612156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphate removal from digested sludge supernatant using modified fly ash.
    Xu K; Deng T; Liu J; Peng W
    Water Environ Res; 2012 May; 84(5):411-6. PubMed ID: 22852426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.