These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64 related articles for article (PubMed ID: 21450519)
1. Isoleucine 259 and isoleucine 260 residues in Streptococcus gordonii soluble inorganic pyrophosphatase play an important role in enzyme activity. Ilias M; White SA; Young TW J Biosci Bioeng; 2011 Jul; 112(1):8-13. PubMed ID: 21450519 [TBL] [Abstract][Full Text] [Related]
2. Streptococcus gordonii soluble inorganic pyrophosphatase: an important role for the interdomain region in enzyme activity. Ilias M; Young TW Biochim Biophys Acta; 2006 Jul; 1764(7):1299-306. PubMed ID: 16829218 [TBL] [Abstract][Full Text] [Related]
3. Rates of elementary catalytic steps for different metal forms of the family II pyrophosphatase from Streptococcus gordonii. Zyryanov AB; Vener AV; Salminen A; Goldman A; Lahti R; Baykov AA Biochemistry; 2004 Feb; 43(4):1065-74. PubMed ID: 14744152 [TBL] [Abstract][Full Text] [Related]
4. Site-specific effects of zinc on the activity of family II pyrophosphatase. Zyryanov AB; Tammenkoski M; Salminen A; Kolomiytseva GY; Fabrichniy IP; Goldman A; Lahti R; Baykov AA Biochemistry; 2004 Nov; 43(45):14395-402. PubMed ID: 15533044 [TBL] [Abstract][Full Text] [Related]
5. Effects of active site mutations on the metal binding affinity, catalytic competence, and stability of the family II pyrophosphatase from Bacillus subtilis. Halonen P; Tammenkoski M; Niiranen L; Huopalahti S; Parfenyev AN; Goldman A; Baykov A; Lahti R Biochemistry; 2005 Mar; 44(10):4004-10. PubMed ID: 15751976 [TBL] [Abstract][Full Text] [Related]
6. Membrane-bound pyrophosphatase of Thermotoga maritima requires sodium for activity. Belogurov GA; Malinen AM; Turkina MV; Jalonen U; Rytkönen K; Baykov AA; Lahti R Biochemistry; 2005 Feb; 44(6):2088-96. PubMed ID: 15697234 [TBL] [Abstract][Full Text] [Related]
7. Effect of E20D substitution in the active site of Escherichia coli inorganic pyrophosphatase on its quaternary structure and catalytic properties. Volk SE; Dudarenkov VY; Käpylä J; Kasho VN; Voloshina OA; Salminen T; Goldman A; Lahti R; Baykov AA; Cooperman BS Biochemistry; 1996 Apr; 35(15):4662-9. PubMed ID: 8664255 [TBL] [Abstract][Full Text] [Related]
8. The "open" and "closed" structures of the type-C inorganic pyrophosphatases from Bacillus subtilis and Streptococcus gordonii. Ahn S; Milner AJ; Fütterer K; Konopka M; Ilias M; Young TW; White SA J Mol Biol; 2001 Nov; 313(4):797-811. PubMed ID: 11697905 [TBL] [Abstract][Full Text] [Related]
9. Deletion mutation analysis on C-terminal domain of plant vacuolar H(+)-pyrophosphatase. Lin HH; Pan YJ; Hsu SH; Van RC; Hsiao YY; Chen JH; Pan RL Arch Biochem Biophys; 2005 Oct; 442(2):206-13. PubMed ID: 16185650 [TBL] [Abstract][Full Text] [Related]
10. A CBS domain-containing pyrophosphatase of Moorella thermoacetica is regulated by adenine nucleotides. Jämsen J; Tuominen H; Salminen A; Belogurov GA; Magretova NN; Baykov AA; Lahti R Biochem J; 2007 Dec; 408(3):327-33. PubMed ID: 17714078 [TBL] [Abstract][Full Text] [Related]
11. Effect of Asp-97-->Glu substitution on the pH dependence of catalysis by inorganic pyrophosphatase of Escherichia coli. Fabrichniy IP; Lahti R; Baykov AA Biochemistry (Mosc); 1997 Sep; 62(9):946-50. PubMed ID: 9457758 [TBL] [Abstract][Full Text] [Related]
12. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target. Harris JM; McIntosh EM; Muscat GE J Mol Biol; 1999 Apr; 288(2):275-87. PubMed ID: 10329142 [TBL] [Abstract][Full Text] [Related]
13. Cooperativity in catalysis by canonical family II pyrophosphatases. Anashkin VA; Aksenova VA; Salminen A; Lahti R; Baykov AA Biochem Biophys Res Commun; 2019 Sep; 517(2):266-271. PubMed ID: 31349973 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary conservation of enzymatic catalysis: quantitative comparison of the effects of mutation of aligned residues in Saccharomyces cerevisiae and Escherichia coli inorganic pyrophosphatases on enzymatic activity. Pohjanjoki P; Lahti R; Goldman A; Cooperman BS Biochemistry; 1998 Feb; 37(7):1754-61. PubMed ID: 9485300 [TBL] [Abstract][Full Text] [Related]
15. A site-directed mutagenesis study on Escherichia coli inorganic pyrophosphatase. Glutamic acid-98 and lysine-104 are important for structural integrity, whereas aspartic acids-97 and -102 are essential for catalytic activity. Lahti R; Pohjanoksa K; Pitkäranta T; Heikinheimo P; Salminen T; Meyer P; Heinonen J Biochemistry; 1990 Jun; 29(24):5761-6. PubMed ID: 1974462 [TBL] [Abstract][Full Text] [Related]
16. Structural studies of metal ions in family II pyrophosphatases: the requirement for a Janus ion. Fabrichniy IP; Lehtiö L; Salminen A; Zyryanov AB; Baykov AA; Lahti R; Goldman A Biochemistry; 2004 Nov; 43(45):14403-11. PubMed ID: 15533045 [TBL] [Abstract][Full Text] [Related]
17. Key NAD+-binding residues in human 15-hydroxyprostaglandin dehydrogenase. Cho H; Hamza A; Zhan CG; Tai HH Arch Biochem Biophys; 2005 Jan; 433(2):447-53. PubMed ID: 15581601 [TBL] [Abstract][Full Text] [Related]
18. Sterol methyltransferase: functional analysis of highly conserved residues by site-directed mutagenesis. Nes WD; Jayasimha P; Zhou W; Kanagasabai R; Jin C; Jaradat TT; Shaw RW; Bujnicki JM Biochemistry; 2004 Jan; 43(2):569-76. PubMed ID: 14717613 [TBL] [Abstract][Full Text] [Related]
19. Bacillus subtilis inorganic pyrophosphatase: the C-terminal signature sequence is essential for enzyme activity and conformational integrity. Konopka MA; White SA; Young TW Biochem Biophys Res Commun; 2002 Jan; 290(2):806-12. PubMed ID: 11785973 [TBL] [Abstract][Full Text] [Related]
20. Structures of chitobiase mutants complexed with the substrate Di-N-acetyl-d-glucosamine: the catalytic role of the conserved acidic pair, aspartate 539 and glutamate 540. Prag G; Papanikolau Y; Tavlas G; Vorgias CE; Petratos K; Oppenheim AB J Mol Biol; 2000 Jul; 300(3):611-7. PubMed ID: 10884356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]