These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 21451045)

  • 1. Preoptic-raphé connections for thermoregulatory vasomotor control.
    Tanaka M; McKinley MJ; McAllen RM
    J Neurosci; 2011 Mar; 31(13):5078-88. PubMed ID: 21451045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of an excitatory preoptic-raphé pathway in febrile vasoconstriction of the rat's tail.
    Tanaka M; McKinley MJ; McAllen RM
    Am J Physiol Regul Integr Comp Physiol; 2013 Dec; 305(12):R1479-89. PubMed ID: 24133101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive drives from two brain stem premotor nuclei are essential to support rat tail sympathetic activity.
    Ootsuka Y; McAllen RM
    Am J Physiol Regul Integr Comp Physiol; 2005 Oct; 289(4):R1107-15. PubMed ID: 15961539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of two preoptic cell groups in tonic and febrile control of rat tail sympathetic fibers.
    Tanaka M; McKinley MJ; McAllen RM
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1248-57. PubMed ID: 19211726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent vasomotor control of rat tail and proximal hairy skin.
    Tanaka M; Ootsuka Y; McKinley MJ; McAllen RM
    J Physiol; 2007 Jul; 582(Pt 1):421-33. PubMed ID: 17430987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of rostral medullary raphé neurons prevents cold-induced activity in sympathetic nerves to rat tail and rabbit ear arteries.
    Ootsuka Y; Blessing WW; McAllen RM
    Neurosci Lett; 2004 Feb; 357(1):58-62. PubMed ID: 15036613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A subsidiary fever center in the medullary raphé?
    Tanaka M; McAllen RM
    Am J Physiol Regul Integr Comp Physiol; 2005 Dec; 289(6):R1592-8. PubMed ID: 15976309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue.
    Nakamura K; Morrison SF
    Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R127-36. PubMed ID: 16931649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the medullary raphé in thermoregulatory vasomotor control in rats.
    Tanaka M; Nagashima K; McAllen RM; Kanosue K
    J Physiol; 2002 Apr; 540(Pt 2):657-64. PubMed ID: 11956351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold-activated raphé-spinal neurons in rats.
    Rathner JA; Owens NC; McAllen RM
    J Physiol; 2001 Sep; 535(Pt 3):841-54. PubMed ID: 11559779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel preoptic pathways for thermoregulation.
    Yoshida K; Li X; Cano G; Lazarus M; Saper CB
    J Neurosci; 2009 Sep; 29(38):11954-64. PubMed ID: 19776281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efferent thermoregulatory pathways regulating cutaneous blood flow and sweating.
    McAllen RM; McKinley MJ
    Handb Clin Neurol; 2018; 156():305-316. PubMed ID: 30454597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rostral ventromedial medulla and the control of cutaneous vasoconstrictor activity following i.c.v. prostaglandin E(1).
    Korsak A; Gilbey MP
    Neuroscience; 2004; 124(3):709-17. PubMed ID: 14980740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal 5-HT2A receptors regulate cutaneous sympathetic vasomotor outflow in rabbits and rats; relevance for cutaneous vasoconstriction elicited by MDMA (3,4-methylenedioxymethamphetamine, "Ecstasy") and its reversal by clozapine.
    Ootsuka Y; Nalivaiko E; Blessing WW
    Brain Res; 2004 Jul; 1014(1-2):34-44. PubMed ID: 15212989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central efferent pathways for cold-defensive and febrile shivering.
    Nakamura K; Morrison SF
    J Physiol; 2011 Jul; 589(Pt 14):3641-58. PubMed ID: 21610139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoregulatory control of sympathetic fibres supplying the rat's tail.
    Owens NC; Ootsuka Y; Kanosue K; McAllen RM
    J Physiol; 2002 Sep; 543(Pt 3):849-58. PubMed ID: 12231643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Descending vasomotor pathways from the dorsomedial hypothalamic nucleus: role of medullary raphe and RVLM.
    Horiuchi J; McAllen RM; Allen AM; Killinger S; Fontes MA; Dampney RA
    Am J Physiol Regul Integr Comp Physiol; 2004 Oct; 287(4):R824-32. PubMed ID: 15205184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential regulation of sympathetic outflows to vasoconstrictor and thermoregulatory effectors.
    Morrison SF
    Ann N Y Acad Sci; 2001 Jun; 940():286-98. PubMed ID: 11458686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of 5-HT1A receptors in rostral medullary raphé inhibits cutaneous vasoconstriction elicited by cold exposure in rabbits.
    Ootsuka Y; Blessing WW
    Brain Res; 2006 Feb; 1073-1074():252-61. PubMed ID: 16455061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitatory amino acid receptor activation in the raphe pallidus area mediates prostaglandin-evoked thermogenesis.
    Madden CJ; Morrison SF
    Neuroscience; 2003; 122(1):5-15. PubMed ID: 14596844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.