These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 21451045)

  • 21. Preoptic mechanism for cold-defensive responses to skin cooling.
    Nakamura K; Morrison SF
    J Physiol; 2008 May; 586(10):2611-20. PubMed ID: 18388139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison between two rat sympathetic pathways activated in cold defense.
    Ootsuka Y; McAllen RM
    Am J Physiol Regul Integr Comp Physiol; 2006 Sep; 291(3):R589-95. PubMed ID: 16601257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray.
    Jiang M; Behbehani MM
    Pain; 2001 Nov; 94(2):139-147. PubMed ID: 11690727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Corticotropin releasing factor increases in brown adipose tissue thermogenesis and heart rate through dorsomedial hypothalamus and medullary raphe pallidus.
    Cerri M; Morrison SF
    Neuroscience; 2006 Jun; 140(2):711-21. PubMed ID: 16580142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Raphe magnus/pallidus neurons regulate tail but not mesenteric arterial blood flow in rats.
    Blessing WW; Nalivaiko E
    Neuroscience; 2001; 105(4):923-9. PubMed ID: 11530230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions.
    Nakamura K; Matsumura K; Hübschle T; Nakamura Y; Hioki H; Fujiyama F; Boldogköi Z; König M; Thiel HJ; Gerstberger R; Kobayashi S; Kaneko T
    J Neurosci; 2004 Jun; 24(23):5370-80. PubMed ID: 15190110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Medullary raphe neurons facilitate brown adipose tissue activation.
    Nason MW; Mason P
    J Neurosci; 2006 Jan; 26(4):1190-8. PubMed ID: 16436606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of preoptic warming on subretrofacial and cutaneous vasoconstrictor neurons in anaesthetized cats.
    McAllen RM; May CN
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):719-30. PubMed ID: 7707238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of slowly conducting medullary raphe-spinal neurons, including serotonergic neurons, increases cutaneous sympathetic vasomotor discharge in rabbit.
    Ootsuka Y; Blessing WW
    Am J Physiol Regul Integr Comp Physiol; 2005 Apr; 288(4):R909-18. PubMed ID: 15550616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss and restoration of preoptic thermoreactiveness after lesions of the rostral raphe nuclei.
    Werner J; Bienek A
    Exp Brain Res; 1990; 80(2):429-35. PubMed ID: 2358054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Axonal projections of caudal ventrolateral medullary and medullary raphe neurons with activity correlated to the 10-Hz rhythm in sympathetic nerve discharge.
    Barman SM; Orer HS; Gebber GL
    J Neurophysiol; 1995 Dec; 74(6):2295-308. PubMed ID: 8747192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different populations of prostaglandin EP3 receptor-expressing preoptic neurons project to two fever-mediating sympathoexcitatory brain regions.
    Nakamura Y; Nakamura K; Morrison SF
    Neuroscience; 2009 Jun; 161(2):614-20. PubMed ID: 19327390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Medullary raphe nuclei activate the lumbosacral defecation center through the descending serotonergic pathway to regulate colorectal motility in rats.
    Nakamori H; Naitou K; Horii Y; Shimaoka H; Horii K; Sakai H; Yamada A; Furue H; Shiina T; Shimizu Y
    Am J Physiol Gastrointest Liver Physiol; 2018 Mar; 314(3):G341-G348. PubMed ID: 29167116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue.
    Madden CJ; Morrison SF
    Am J Physiol Regul Integr Comp Physiol; 2009 Mar; 296(3):R831-43. PubMed ID: 19129373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endogenous activation of spinal 5-hydroxytryptamine (5-HT) receptors contributes to the thermoregulatory activation of brown adipose tissue.
    Madden CJ; Morrison SF
    Am J Physiol Regul Integr Comp Physiol; 2010 Mar; 298(3):R776-83. PubMed ID: 20071609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CNS cell groups projecting to sympathetic outflow of tail artery: neural circuits involved in heat loss in the rat.
    Smith JE; Jansen AS; Gilbey MP; Loewy AD
    Brain Res; 1998 Mar; 786(1-2):153-64. PubMed ID: 9554992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of the raphé pallidus in the suppressive effect of preoptic warming on non-shivering thermogenesis in rats.
    Taniguchi A; Chen XM; Nagashima K; Tanaka M; Kanosue K
    Brain Res; 2003 Mar; 966(1):103-9. PubMed ID: 12646313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rostral ventromedial periaqueductal gray: a source of inhibition of the sympathetic outflow to brown adipose tissue.
    Rathner JA; Morrison SF
    Brain Res; 2006 Mar; 1077(1):99-107. PubMed ID: 16499889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The significance of nucleus raphe dorsalis and centralis for thermoafferent signal transmission to the preoptic area of the rat.
    Werner J; Bienek A
    Exp Brain Res; 1985; 59(3):543-7. PubMed ID: 2993013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glutamate receptors in the raphe pallidus mediate brown adipose tissue thermogenesis evoked by activation of dorsomedial hypothalamic neurons.
    Cao WH; Morrison SF
    Neuropharmacology; 2006 Sep; 51(3):426-37. PubMed ID: 16733059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.