These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21451055)

  • 1. The influence of predicted arm biomechanics on decision making.
    Cos I; Bélanger N; Cisek P
    J Neurophysiol; 2011 Jun; 105(6):3022-33. PubMed ID: 21451055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The modulatory influence of end-point controllability on decisions between actions.
    Cos I; Medleg F; Cisek P
    J Neurophysiol; 2012 Sep; 108(6):1764-80. PubMed ID: 22773776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional biases reveal utilization of arm's biomechanical properties for optimization of motor behavior.
    Goble JA; Zhang Y; Shimansky Y; Sharma S; Dounskaia NV
    J Neurophysiol; 2007 Sep; 98(3):1240-52. PubMed ID: 17625062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the learning of biomechanics and visual planning for decision-making of motor actions.
    Cos I; Khamassi M; Girard B
    J Physiol Paris; 2013 Nov; 107(5):399-408. PubMed ID: 23973913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Handedness: dominant arm advantages in control of limb dynamics.
    Bagesteiro LB; Sainburg RL
    J Neurophysiol; 2002 Nov; 88(5):2408-21. PubMed ID: 12424282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adjustment of the human arm viscoelastic properties to the direction of reaching.
    Frolov AA; Prokopenko RA; Dufossè M; Ouezdou FB
    Biol Cybern; 2006 Feb; 94(2):97-109. PubMed ID: 16344944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal trajectory formation of constrained human arm reaching movements.
    Ohta K; Svinin MM; Luo Z; Hosoe S; Laboissière R
    Biol Cybern; 2004 Jul; 91(1):23-36. PubMed ID: 15309545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of altering initial position on movement direction and extent.
    Sainburg RL; Lateiner JE; Latash ML; Bagesteiro LB
    J Neurophysiol; 2003 Jan; 89(1):401-15. PubMed ID: 12522189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated turn-and-reach movements. II. Planning in an external frame of reference.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):290-303. PubMed ID: 12522180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertical torque allows recording of anticipatory postural adjustments associated with slow, arm-raising movements.
    Bleuse S; Cassim F; Blatt JL; Defebvre L; Derambure P; Guieu JD
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):693-9. PubMed ID: 15921833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-joint coupling and joint angle synergies of human catching movements.
    Bockemühl T; Troje NF; Dürr V
    Hum Mov Sci; 2010 Feb; 29(1):73-93. PubMed ID: 19945187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Timing of muscle activity during reaching while standing: systematic changes with target distance.
    Tyler AE; Karst GM
    Gait Posture; 2004 Oct; 20(2):126-33. PubMed ID: 15336281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of trajectory planning models for arm-reaching movements based on energy cost.
    Nishii J; Taniai Y
    Neural Comput; 2009 Sep; 21(9):2634-47. PubMed ID: 19548798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct brain activation patterns for human maximal voluntary eccentric and concentric muscle actions.
    Fang Y; Siemionow V; Sahgal V; Xiong F; Yue GH
    Brain Res; 2004 Oct; 1023(2):200-12. PubMed ID: 15374746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-latency responses during reaching account for the mechanical interaction between the shoulder and elbow joints.
    Kurtzer I; Pruszynski JA; Scott SH
    J Neurophysiol; 2009 Nov; 102(5):3004-15. PubMed ID: 19710379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of age on anticipatory postural adjustments in unilateral arm movement.
    Bleuse S; Cassim F; Blatt JL; Labyt E; Derambure P; Guieu JD; Defebvre L
    Gait Posture; 2006 Oct; 24(2):203-10. PubMed ID: 16213140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-joint coupling strategy during adaptation to novel viscous loads in human arm movement.
    Debicki DB; Gribble PL
    J Neurophysiol; 2004 Aug; 92(2):754-65. PubMed ID: 15056688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaching to multiple targets when standing: the spatial organization of feedforward postural adjustments.
    Leonard JA; Brown RH; Stapley PJ
    J Neurophysiol; 2009 Apr; 101(4):2120-33. PubMed ID: 19211658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.