BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21451231)

  • 1. Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water.
    Sapkota A; Anceno AJ; Baruah S; Shipin OV; Dutta J
    Nanotechnology; 2011 May; 22(21):215703. PubMed ID: 21451231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity.
    Agnihotri S; Bajaj G; Mukherji S; Mukherji S
    Nanoscale; 2015 Apr; 7(16):7415-29. PubMed ID: 25830178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZnO nanorod-chitosan composite coatings with enhanced antifouling properties.
    Al-Belushi MA; Myint MTZ; Kyaw HH; Al-Naamani L; Al-Mamari R; Al-Abri M; Dobretsov S
    Int J Biol Macromol; 2020 Nov; 162():1743-1751. PubMed ID: 32800955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifouling properties of zinc oxide nanorod coatings.
    Al-Fori M; Dobretsov S; Myint MT; Dutta J
    Biofouling; 2014; 30(7):871-82. PubMed ID: 25115521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing interaction of gram-positive and gram-negative bacterial cells with ZnO nanorods.
    Jain A; Bhargava R; Poddar P
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1247-53. PubMed ID: 23827568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bactericidal mechanisms of Ag₂O/TNBs under both dark and light conditions.
    Jin Y; Dai Z; Liu F; Kim H; Tong M; Hou Y
    Water Res; 2013 Apr; 47(5):1837-47. PubMed ID: 23360730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun ZnO/TiO2 composite nanofibers as a bactericidal agent.
    Hwang SH; Song J; Jung Y; Kweon OY; Song H; Jang J
    Chem Commun (Camb); 2011 Aug; 47(32):9164-6. PubMed ID: 21761035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of γ-irradiation on the growth of ZnO nanorod films for photocatalytic disinfection of contaminated water.
    Alarcón J; Ponce S; Paraguay-Delgado F; Rodríguez J
    J Colloid Interface Sci; 2011 Dec; 364(1):49-55. PubMed ID: 21906749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions.
    Adams LK; Lyon DY; Alvarez PJ
    Water Res; 2006 Nov; 40(19):3527-32. PubMed ID: 17011015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient ZnO-based visible-light-driven photocatalyst for antibacterial applications.
    Kumar R; Anandan S; Hembram K; Rao TN
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13138-48. PubMed ID: 25029041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ZnO and TiO₂ nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis.
    Kim SW; An YJ
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):243-53. PubMed ID: 22615055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media.
    Li M; Pokhrel S; Jin X; Mädler L; Damoiseaux R; Hoek EM
    Environ Sci Technol; 2011 Jan; 45(2):755-61. PubMed ID: 21133426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells.
    Nair S; Sasidharan A; Divya Rani VV; Menon D; Nair S; Manzoor K; Raina S
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S235-41. PubMed ID: 18716714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential susceptibility of Escherichia coli cells toward transition metal-doped and matrix-embedded ZnO nanoparticles.
    Dutta RK; Sharma PK; Bhargava R; Kumar N; Pandey AC
    J Phys Chem B; 2010 Apr; 114(16):5594-9. PubMed ID: 20369857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced inactivation of bacteria by metal-oxide nanoparticles combined with visible light irradiation.
    Lipovsky A; Gedanken A; Nitzan Y; Lubart R
    Lasers Surg Med; 2011 Mar; 43(3):236-40. PubMed ID: 21412807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide.
    Nafchi AM; Nassiri R; Sheibani S; Ariffin F; Karim AA
    Carbohydr Polym; 2013 Jul; 96(1):233-9. PubMed ID: 23688475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of oxygen defects mediated enhanced photocatalytic and antibacterial performance of ZnO nanorods.
    Singh J; Juneja S; Palsaniya S; Manna AK; Soni RK; Bhattacharya J
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110541. PubMed ID: 31606700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination.
    Leung YH; Chan CM; Ng AM; Chan HT; Chiang MW; Djurišić AB; Ng YH; Jim WY; Guo MY; Leung FC; Chan WK; Au DT
    Nanotechnology; 2012 Nov; 23(47):475703. PubMed ID: 23103840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics.
    Perelshtein I; Applerot G; Perkas N; Wehrschetz-Sigl E; Hasmann A; Guebitz GM; Gedanken A
    ACS Appl Mater Interfaces; 2009 Feb; 1(2):361-6. PubMed ID: 20353224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evaluation of the antibacterial factors of ZnO nanorod arrays under dark conditions: Physical and chemical effects on Escherichia coli inactivation.
    Jeong E; Kim CU; Byun J; Lee J; Kim HE; Kim EJ; Choi KJ; Hong SW
    Sci Total Environ; 2020 Apr; 712():136574. PubMed ID: 32050388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.