These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21451320)

  • 1. The influence of bone-density on in vivo K x-ray fluorescence bone-lead measurements.
    Lodwick CJ; Lodwick JC; Spitz HB
    Health Phys; 2011 May; 100(5):502-7. PubMed ID: 21451320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation of an anthropometric phantom used for calibrating in vivo K-XRF spectroscopy measurements of stable lead in bone.
    Lodwick CJ; Spitz HB
    Health Phys; 2008 Dec; 95(6):744-53. PubMed ID: 19001901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification to the Monte Carlo N-particle code for simulating direct, in vivo measurement of stable lead in bone.
    Lodwick CJ; Spitz HB
    Health Phys; 2008 Jun; 94(6):519-26. PubMed ID: 18469585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Non-invasive determination of bone lead in human body using X-ray fluorescence excited by 109Cd].
    Huang SB; Tian L; Cheng HS; Pei P
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1470-2. PubMed ID: 15762508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of covariance between the K alpha and the K beta lead peak concentrations on the uncertainty in the result of in vivo (109)Cd KXRF bone lead measurement.
    Brito JA
    Phys Med Biol; 2006 Dec; 51(23):6125-39. PubMed ID: 17110775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new anthropometric phantom for calibrating in vivo measurements of stable lead in the human leg using x-ray fluorescence.
    Spitz H; Jenkins M; Lodwick J; Bornschein R
    Health Phys; 2000 Feb; 78(2):159-69. PubMed ID: 10647982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty calculations for the measurement of in vivo bone lead by x-ray fluorescence.
    O'Meara JM; Fleming DE
    Phys Med Biol; 2009 Apr; 54(8):2449-61. PubMed ID: 19336842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulations of in vivo K-shell X-ray fluorescence bone lead measurement and implications for radiation dosimetry.
    Ahmed N; Fleming DE; O'Meara JM
    Appl Radiat Isot; 2006 Sep; 64(9):1036-42. PubMed ID: 16766194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent normalization of finger strontium XRF measurements: feasibility and limitations.
    Zamburlini M; Pejović-Milić A; Chettle DR
    Phys Med Biol; 2008 Aug; 53(15):N307-13. PubMed ID: 18635898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo K-shell X-ray fluorescence bone lead measurements in young adults.
    Ahmed N; Osika NA; Wilson AM; Fleming DE
    J Environ Monit; 2005 May; 7(5):457-62. PubMed ID: 15877166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo monitoring of bone-Pb and retrospective exposure: an assessment in occupationally exposed subjects.
    Tartari A; Casnati E; Baraldi C; Giganti M; De Rosa E; Gregorio P; Brito J
    J Trace Elem Med Biol; 1997 Nov; 11(3):179-81. PubMed ID: 9442468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of (109)Cd KXRF systems for in vivo bone lead measurements: the guiding role of the assumptions for least-squares regression in practical problem solving.
    de Brito JA; de Carvalho ML; Chettle DR
    Phys Med Biol; 2009 Feb; 54(4):919-34. PubMed ID: 19141884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo x-ray fluorescence measurements of cadmium and lead.
    Nilsson U; Skerfving S
    Scand J Work Environ Health; 1993; 19 Suppl 1():54-8. PubMed ID: 8159974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normalisation with coherent scatter signal: improvements in the calibration procedure of the 57Co-based in vivo XRF bone-Pb measurement.
    O'Meara JM; Börjesson J; Chettle DR; Mattsson S
    Appl Radiat Isot; 2001 Feb; 54(2):319-25. PubMed ID: 11200895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of K X-ray fluorescence for measuring lead burden in epidemiological studies: high and low lead burdens and measurement uncertainty.
    Hu H; Milder FL; Burger DE
    Environ Health Perspect; 1991 Aug; 94():107-10. PubMed ID: 1954919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-shell x-ray fluorescence measurements of lead in bone: system development.
    Todd AC
    Phys Med Biol; 2002 Feb; 47(3):507-22. PubMed ID: 11848125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeatability of tibia lead measurement by X-Ray fluorescence in a battery-making workforce.
    Todd AC; Ehrlich RI; Selby P; Jordaan E
    Environ Res; 2000 Nov; 84(3):282-9. PubMed ID: 11097802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of (109)Cd KXRF systems for in vivo bone lead measurements: weighted least-squares regression with different weighting functions.
    de Brito JA; Chettle DR
    Phys Med Biol; 2009 Jul; 54(13):L45-50. PubMed ID: 19521005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting in vivo measurement precision and accuracy of 109Cd K x-ray fluorescence measurements.
    McNeill FE; Stokes L; Chettle DR; Kaye WE
    Phys Med Biol; 1999 Sep; 44(9):2263-73. PubMed ID: 10495120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ex vivo evaluation of a coherent normalization procedure to quantify in vivo finger strontium XRS measurements.
    Heirwegh CM; Chettle DR; Pejovicc-Milicc A
    Med Phys; 2012 Feb; 39(2):832-41. PubMed ID: 22320793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.