BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 21451642)

  • 1. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate: comment.
    Boulais E; Robitaille A; Desjeans-Gauthier P; Meunier M
    Opt Express; 2011 Mar; 19(7):6177-8; discussion 6179-81. PubMed ID: 21451642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.
    Harrison RK; Ben-Yakar A
    Opt Express; 2010 Oct; 18(21):22556-71. PubMed ID: 20941153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale subsurface- and material-specific identification of single nanoparticles.
    Nuño Z; Hessler B; Ochoa J; Shon YS; Bonney C; Abate Y
    Opt Express; 2011 Oct; 19(21):20865-75. PubMed ID: 21997096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallodielectric hollow shells: optical and catalytic properties.
    Pastoriza-Santos I; Pérez-Juste J; Carregal-Romero S; Hervés P; Liz-Marzán LM
    Chem Asian J; 2006 Nov; 1(5):730-6. PubMed ID: 17441116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm.
    Falcão-Filho EL; Barbosa-Silva R; Sobral-Filho RG; Brito-Silva AM; Galembeck A; de Araújo CB
    Opt Express; 2010 Oct; 18(21):21636-44. PubMed ID: 20941062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of large-scale patterned gold-nanopillar arrays on a silicon substrate using imprinted porous alumina templates.
    Wolfrum B; Mourzina Y; Mayer D; Schwaab D; Offenhäusser A
    Small; 2006 Nov; 2(11):1256-60. PubMed ID: 17192970
    [No Abstract]   [Full Text] [Related]  

  • 7. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces.
    Horiguchi Y; Honda K; Kato Y; Nakashima N; Niidome Y
    Langmuir; 2008 Oct; 24(20):12026-31. PubMed ID: 18759472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters.
    Deng HD; Li GC; Dai QF; Ouyang M; Lan S; Gopal AV; Trofimov VA; Lysak TM
    Opt Express; 2012 May; 20(10):10963-70. PubMed ID: 22565719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.
    Kuznetsov AI; Kiyan R; Chichkov BN
    Opt Express; 2010 Sep; 18(20):21198-203. PubMed ID: 20941016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imprinting the optical near field of microstructures with nanometer resolution.
    Kühler P; García de Abajo FJ; Solis J; Mosbacher M; Leiderer P; Afonso CN; Siegel J
    Small; 2009 Aug; 5(16):1825-9. PubMed ID: 19618427
    [No Abstract]   [Full Text] [Related]  

  • 11. A selective chemical sensor based on the plasmonic response of phosphinine-stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers.
    Goettmann F; Moores A; Boissière C; Le Floch P; Sanchez C
    Small; 2005 Jun; 1(6):636-9. PubMed ID: 17193499
    [No Abstract]   [Full Text] [Related]  

  • 12. Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon.
    Rodríguez-Cantó PJ; Martínez-Marco M; Rodríguez-Fortuño FJ; Tomás-Navarro B; Ortuño R; Peransí-Llopis S; Martínez A
    Opt Express; 2011 Apr; 19(8):7664-72. PubMed ID: 21503075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monofunctional gold nanoparticles prepared via a noncovalent-interaction-based solid-phase modification approach.
    Liu X; Worden JG; Dai Q; Zou J; Wang J; Huo Q
    Small; 2006 Oct; 2(10):1126-9. PubMed ID: 17193575
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods.
    Chen H; Ming T; Zhang S; Jin Z; Yang B; Wang J
    ACS Nano; 2011 Jun; 5(6):4865-77. PubMed ID: 21524133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-selective integration of monolayer-protected inorganic nanoparticles onto surface monolayer templates by a solvent-induced lift-off process.
    Akamatsu K; Samitsu S; Tsuruoka T; Hasegawa J; Nawafune H
    Small; 2006 Oct; 2(10):1130-3. PubMed ID: 17193576
    [No Abstract]   [Full Text] [Related]  

  • 16. Vascular labeling of luminescent gold nanorods enables 3-D microscopy of mouse intestinal capillaries.
    Tang SC; Fu YY; Lo WF; Hua TE; Tuan HY
    ACS Nano; 2010 Oct; 4(10):6278-84. PubMed ID: 20886812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray absorption of gold nanoparticles with thin silica shell.
    Park YS; Liz-Marzán LM; Kasuya A; Kobayashi Y; Nagao D; Konno M; Mamykin S; Dmytruk A; Takeda M; Ohuchi N
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3503-6. PubMed ID: 17252799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An interference localized surface plasmon resonance biosensor based on the photonic structure of Au nanoparticles and SiO2/Si multilayers.
    Hiep HM; Yoshikawa H; Saito M; Tamiya E
    ACS Nano; 2009 Feb; 3(2):446-52. PubMed ID: 19236084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J; Kvasnička P; Idso M; Jordan RW; Gong H; Homola J; Yu Q
    Opt Express; 2011 Oct; 19(21):20493-505. PubMed ID: 21997057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A compact light concentrator by the use of plasmonic faced folded nano-rods.
    Chung T; Lim Y; Lee IM; Lee SY; Choi J; Roh S; Kim KY; Lee B
    Opt Express; 2011 Oct; 19(21):20751-60. PubMed ID: 21997085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.