These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 21452034)
1. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Ikeda M; Mizuno Y; Awane S; Hayashi M; Mitsuhashi S; Takeno S Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034 [TBL] [Abstract][Full Text] [Related]
2. A third glucose uptake bypass in Corynebacterium glutamicum ATCC 31833. Ikeda M; Noguchi N; Ohshita M; Senoo A; Mitsuhashi S; Takeno S Appl Microbiol Biotechnol; 2015 Mar; 99(6):2741-50. PubMed ID: 25549619 [TBL] [Abstract][Full Text] [Related]
3. Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum. Lindner SN; Seibold GM; Krämer R; Wendisch VF Bioeng Bugs; 2011; 2(5):291-5. PubMed ID: 22008639 [TBL] [Abstract][Full Text] [Related]
4. Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases. Lindner SN; Seibold GM; Henrich A; Krämer R; Wendisch VF Appl Environ Microbiol; 2011 Jun; 77(11):3571-81. PubMed ID: 21478323 [TBL] [Abstract][Full Text] [Related]
5. Myo-inositol facilitators IolT1 and IolT2 enhance D-mannitol formation from D-fructose in Corynebacterium glutamicum. Bäumchen C; Krings E; Bringer S; Eggeling L; Sahm H FEMS Microbiol Lett; 2009 Jan; 290(2):227-35. PubMed ID: 19054080 [TBL] [Abstract][Full Text] [Related]
6. Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development. Ikeda M Appl Microbiol Biotechnol; 2012 Dec; 96(5):1191-200. PubMed ID: 23081775 [TBL] [Abstract][Full Text] [Related]
7. The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation. Moon MW; Park SY; Choi SK; Lee JK J Mol Microbiol Biotechnol; 2007; 12(1-2):43-50. PubMed ID: 17183210 [TBL] [Abstract][Full Text] [Related]
8. Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose. Sasaki M; Teramoto H; Inui M; Yukawa H Appl Microbiol Biotechnol; 2011 Mar; 89(6):1905-16. PubMed ID: 21125267 [TBL] [Abstract][Full Text] [Related]
9. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. Gaigalat L; Schlüter JP; Hartmann M; Mormann S; Tauch A; Pühler A; Kalinowski J BMC Mol Biol; 2007 Nov; 8():104. PubMed ID: 18005413 [TBL] [Abstract][Full Text] [Related]
10. Regulation of expression of general components of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum. Tanaka Y; Teramoto H; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Feb; 78(2):309-18. PubMed ID: 18183389 [TBL] [Abstract][Full Text] [Related]
11. Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant. Zhou Z; Wang C; Xu H; Chen Z; Cai H J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1073-82. PubMed ID: 25952119 [TBL] [Abstract][Full Text] [Related]
12. Increased glucose utilization and cell growth of Corynebacterium glutamicum by modifying the glucose-specific phosphotransferase system (PTS Xu J; Zhang J; Liu D; Zhang W Can J Microbiol; 2016 Dec; 62(12):983-992. PubMed ID: 27718589 [TBL] [Abstract][Full Text] [Related]
13. Corynebacterium glutamicum: a dissection of the PTS. Parche S; Burkovski A; Sprenger GA; Weil B; Krämer R; Titgemeyer F J Mol Microbiol Biotechnol; 2001 Jul; 3(3):423-8. PubMed ID: 11361073 [TBL] [Abstract][Full Text] [Related]
15. Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum. Henrich A; Kuhlmann N; Eck AW; Krämer R; Seibold GM J Bacteriol; 2013 Jun; 195(11):2573-84. PubMed ID: 23543710 [TBL] [Abstract][Full Text] [Related]
16. Nutrient-scavenging stress response in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system, as explored by gene expression profile analysis. Flores S; Flores N; de Anda R; González A; Escalante A; Sigala JC; Gosset G; Bolívar F J Mol Microbiol Biotechnol; 2005; 10(1):51-63. PubMed ID: 16491026 [TBL] [Abstract][Full Text] [Related]
17. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease. Flores N; Leal L; Sigala JC; de Anda R; Escalante A; Martínez A; Ramírez OT; Gosset G; Bolivar F J Mol Microbiol Biotechnol; 2007; 13(1-3):105-16. PubMed ID: 17693718 [TBL] [Abstract][Full Text] [Related]
18. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. Moon MW; Kim HJ; Oh TK; Shin CS; Lee JS; Kim SJ; Lee JK FEMS Microbiol Lett; 2005 Mar; 244(2):259-66. PubMed ID: 15766777 [TBL] [Abstract][Full Text] [Related]
19. Regulation of the expression of phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum R. Tanaka Y; Okai N; Teramoto H; Inui M; Yukawa H Microbiology (Reading); 2008 Jan; 154(Pt 1):264-274. PubMed ID: 18174145 [TBL] [Abstract][Full Text] [Related]
20. Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. Krings E; Krumbach K; Bathe B; Kelle R; Wendisch VF; Sahm H; Eggeling L J Bacteriol; 2006 Dec; 188(23):8054-61. PubMed ID: 16997948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]