BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 21452034)

  • 1. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum.
    Ikeda M; Mizuno Y; Awane S; Hayashi M; Mitsuhashi S; Takeno S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A third glucose uptake bypass in Corynebacterium glutamicum ATCC 31833.
    Ikeda M; Noguchi N; Ohshita M; Senoo A; Mitsuhashi S; Takeno S
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2741-50. PubMed ID: 25549619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum.
    Lindner SN; Seibold GM; Krämer R; Wendisch VF
    Bioeng Bugs; 2011; 2(5):291-5. PubMed ID: 22008639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.
    Lindner SN; Seibold GM; Henrich A; Krämer R; Wendisch VF
    Appl Environ Microbiol; 2011 Jun; 77(11):3571-81. PubMed ID: 21478323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myo-inositol facilitators IolT1 and IolT2 enhance D-mannitol formation from D-fructose in Corynebacterium glutamicum.
    Bäumchen C; Krings E; Bringer S; Eggeling L; Sahm H
    FEMS Microbiol Lett; 2009 Jan; 290(2):227-35. PubMed ID: 19054080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development.
    Ikeda M
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1191-200. PubMed ID: 23081775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation.
    Moon MW; Park SY; Choi SK; Lee JK
    J Mol Microbiol Biotechnol; 2007; 12(1-2):43-50. PubMed ID: 17183210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose.
    Sasaki M; Teramoto H; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1905-16. PubMed ID: 21125267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum.
    Gaigalat L; Schlüter JP; Hartmann M; Mormann S; Tauch A; Pühler A; Kalinowski J
    BMC Mol Biol; 2007 Nov; 8():104. PubMed ID: 18005413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of expression of general components of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum.
    Tanaka Y; Teramoto H; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Feb; 78(2):309-18. PubMed ID: 18183389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant.
    Zhou Z; Wang C; Xu H; Chen Z; Cai H
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1073-82. PubMed ID: 25952119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased glucose utilization and cell growth of Corynebacterium glutamicum by modifying the glucose-specific phosphotransferase system (PTS
    Xu J; Zhang J; Liu D; Zhang W
    Can J Microbiol; 2016 Dec; 62(12):983-992. PubMed ID: 27718589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corynebacterium glutamicum: a dissection of the PTS.
    Parche S; Burkovski A; Sprenger GA; Weil B; Krämer R; Titgemeyer F
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):423-8. PubMed ID: 11361073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.
    Lindner SN; Petrov DP; Hagmann CT; Henrich A; Krämer R; Eikmanns BJ; Wendisch VF; Seibold GM
    Appl Environ Microbiol; 2013 Apr; 79(8):2588-95. PubMed ID: 23396334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum.
    Henrich A; Kuhlmann N; Eck AW; Krämer R; Seibold GM
    J Bacteriol; 2013 Jun; 195(11):2573-84. PubMed ID: 23543710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient-scavenging stress response in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system, as explored by gene expression profile analysis.
    Flores S; Flores N; de Anda R; González A; Escalante A; Sigala JC; Gosset G; Bolívar F
    J Mol Microbiol Biotechnol; 2005; 10(1):51-63. PubMed ID: 16491026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease.
    Flores N; Leal L; Sigala JC; de Anda R; Escalante A; Martínez A; Ramírez OT; Gosset G; Bolivar F
    J Mol Microbiol Biotechnol; 2007; 13(1-3):105-16. PubMed ID: 17693718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.
    Moon MW; Kim HJ; Oh TK; Shin CS; Lee JS; Kim SJ; Lee JK
    FEMS Microbiol Lett; 2005 Mar; 244(2):259-66. PubMed ID: 15766777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the expression of phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum R.
    Tanaka Y; Okai N; Teramoto H; Inui M; Yukawa H
    Microbiology (Reading); 2008 Jan; 154(Pt 1):264-274. PubMed ID: 18174145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation.
    Krings E; Krumbach K; Bathe B; Kelle R; Wendisch VF; Sahm H; Eggeling L
    J Bacteriol; 2006 Dec; 188(23):8054-61. PubMed ID: 16997948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.