These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 21452726)
41. 3D phantom for image quality assessment of mammography systems. Bermúdez J; Roque G; Calderón J; Pardo P; Sánchez M; Ramos V; Ávila C Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37733054 [No Abstract] [Full Text] [Related]
42. Implementation and evaluation of an expectation maximization reconstruction algorithm for gamma emission breast tomosynthesis. Gong Z; Klanian K; Patel T; Sullivan O; Williams MB Med Phys; 2012 Dec; 39(12):7580-92. PubMed ID: 23231306 [TBL] [Abstract][Full Text] [Related]
43. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system. Rodrigues L; Magalhaes LA; Braz D Radiat Prot Dosimetry; 2015 Dec; 167(4):576-83. PubMed ID: 25480841 [TBL] [Abstract][Full Text] [Related]
44. A three-dimensional breast software phantom for mammography simulation. Bliznakova K; Bliznakov Z; Bravou V; Kolitsi Z; Pallikarakis N Phys Med Biol; 2003 Nov; 48(22):3699-719. PubMed ID: 14680268 [TBL] [Abstract][Full Text] [Related]
45. Comparison of full-field digital mammography to screen-film mammography with respect to contrast and spatial resolution in tissue equivalent breast phantoms. Kuzmiak CM; Pisano ED; Cole EB; Zeng D; Burns CB; Roberto C; Pavic D; Lee Y; Seo BK; Koomen M; Washburn D Med Phys; 2005 Oct; 32(10):3144-50. PubMed ID: 16279068 [TBL] [Abstract][Full Text] [Related]
46. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis. Shaheen E; Van Ongeval C; Zanca F; Cockmartin L; Marshall N; Jacobs J; Young KC; R Dance D; Bosmans H Med Phys; 2011 Dec; 38(12):6659-71. PubMed ID: 22149848 [TBL] [Abstract][Full Text] [Related]
47. A novel approach to digital breast tomosynthesis for simultaneous acquisition of 2D and 3D images. Vecchio S; Albanese A; Vignoli P; Taibi A Eur Radiol; 2011 Jun; 21(6):1207-13. PubMed ID: 21193910 [TBL] [Abstract][Full Text] [Related]
48. Performance of a PSPMT based detector for scintimammography. Williams MB; Williams MB; Goode AR; Galbis-Reig V; Majewski S; Weisenberger AG; Wojcik R Phys Med Biol; 2000 Mar; 45(3):781-800. PubMed ID: 10730971 [TBL] [Abstract][Full Text] [Related]
49. Technical note: Realization and uncertainty analysis for an adjustable 3D structured breast phantom in digital breast tomosynthesis. Salomon E; Unger E; Homolka P; Cockmartin L; Petrov D; Semturs F; Songsaeng C; Panagiotis K; Vancoillie L; Figl M; Sommer A; Bosmans H; Hummel J Med Phys; 2023 Aug; 50(8):4816-4824. PubMed ID: 37438921 [TBL] [Abstract][Full Text] [Related]
50. Can compression be reduced for breast tomosynthesis? Monte carlo study on mass and microcalcification conspicuity in tomosynthesis. Saunders RS; Samei E; Lo JY; Baker JA Radiology; 2009 Jun; 251(3):673-82. PubMed ID: 19474373 [TBL] [Abstract][Full Text] [Related]
51. Patient-based 4D digital breast phantom for perfusion contrast-enhanced breast CT imaging. Caballo M; Mann R; Sechopoulos I Med Phys; 2018 Oct; 45(10):4448-4460. PubMed ID: 30151857 [TBL] [Abstract][Full Text] [Related]
52. Evaluation of an improved algorithm for producing realistic 3D breast software phantoms: application for mammography. Bliznakova K; Suryanarayanan S; Karellas A; Pallikarakis N Med Phys; 2010 Nov; 37(11):5604-17. PubMed ID: 21158272 [TBL] [Abstract][Full Text] [Related]
53. A novel breast software phantom for biomechanical modeling of elastography. Bhatti SN; Sridhar-Keralapura M Med Phys; 2012 Apr; 39(4):1748-68. PubMed ID: 22482599 [TBL] [Abstract][Full Text] [Related]
54. Experimental phantom lesion detectability study using a digital breast tomosynthesis prototype system. Schulz-Wendtland R; Wenkel E; Lell M; Böhner C; Bautz WA; Mertelmeier T Rofo; 2006 Dec; 178(12):1219-23. PubMed ID: 17136645 [TBL] [Abstract][Full Text] [Related]
55. Calibrated breast density methods for full field digital mammography: a system for serial quality control and inter-system generalization. Lu B; Smallwood AM; Sellers TA; Drukteinis JS; Heine JJ; Fowler EE Med Phys; 2015 Feb; 42(2):623-36. PubMed ID: 25652480 [TBL] [Abstract][Full Text] [Related]
56. A new CT reconstruction technique using adaptive deformation recovery and intensity correction (ADRIC). Zhang Y; Ma J; Iyengar P; Zhong Y; Wang J Med Phys; 2017 Jun; 44(6):2223-2241. PubMed ID: 28380247 [TBL] [Abstract][Full Text] [Related]
57. Calculation of strain images of a breast-mimicking phantom from 3D CT image data. Kim JG; Aowlad Hossain AB; Shin JH; Lee SY Med Phys; 2012 Sep; 39(9):5469-78. PubMed ID: 22957614 [TBL] [Abstract][Full Text] [Related]
58. The advent of anthropomorphic three-dimensional breast phantoms for X-ray imaging. Bliznakova K Phys Med; 2020 Nov; 79():145-161. PubMed ID: 33321469 [TBL] [Abstract][Full Text] [Related]
59. A new test phantom with different breast tissue compositions for image quality assessment in conventional and digital mammography. Pachoud M; Lepori D; Valley JF; Verdun FR Phys Med Biol; 2004 Dec; 49(23):5267-81. PubMed ID: 15656276 [TBL] [Abstract][Full Text] [Related]
60. A high-resolution voxel phantom of the breast for dose calculations in mammography. Hoeschen C; Fill U; Zankl M; Panzer W; Regulla D; Döhring W Radiat Prot Dosimetry; 2005; 114(1-3):406-9. PubMed ID: 15933147 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]