These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 21452817)

  • 1. 8-Oxoguanosine switches modulate the activity of alkylated siRNAs by controlling steric effects in the major versus minor grooves.
    Kannan A; Fostvedt E; Beal PA; Burrows CJ
    J Am Chem Soc; 2011 Apr; 133(16):6343-51. PubMed ID: 21452817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling activation of the RNA-dependent protein kinase by siRNAs using site-specific chemical modification.
    Puthenveetil S; Whitby L; Ren J; Kelnar K; Krebs JF; Beal PA
    Nucleic Acids Res; 2006; 34(17):4900-11. PubMed ID: 16982647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minor-groove-modulating adenosine replacements control protein binding and RNAi activity in siRNAs.
    Peacock H; Fostvedt E; Beal PA
    ACS Chem Biol; 2010 Dec; 5(12):1115-24. PubMed ID: 20863128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleoside modifications modulate activation of the protein kinase PKR in an RNA structure-specific manner.
    Nallagatla SR; Bevilacqua PC
    RNA; 2008 Jun; 14(6):1201-13. PubMed ID: 18426922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promiscuous 8-alkoxyadenosines in the guide strand of an siRNA: modulation of silencing efficacy and off-pathway protein binding.
    Ghanty U; Fostvedt E; Valenzuela R; Beal PA; Burrows CJ
    J Am Chem Soc; 2012 Oct; 134(42):17643-52. PubMed ID: 23030736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amide-Modified RNA: Using Protein Backbone to Modulate Function of Short Interfering RNAs.
    Kotikam V; Rozners E
    Acc Chem Res; 2020 Sep; 53(9):1782-1790. PubMed ID: 32658452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical synthesis of 2'-O-alkylated siRNAs.
    Engels JW; Odadzic D; Smicius R; Haas J
    Methods Mol Biol; 2010; 623():155-70. PubMed ID: 20217550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of the protein kinase PKR to RNAs with secondary structure defects: role of the tandem A-G mismatch and noncontiguous helixes.
    Bevilacqua PC; George CX; Samuel CE; Cech TR
    Biochemistry; 1998 May; 37(18):6303-16. PubMed ID: 9572845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small interfering RNAs induce macrophage migration inhibitory factor production and proliferation in breast cancer cells via a double-stranded RNA-dependent protein kinase-dependent mechanism.
    Armstrong ME; Gantier M; Li L; Chung WY; McCann A; Baugh JA; Donnelly SC
    J Immunol; 2008 Jun; 180(11):7125-33. PubMed ID: 18490711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Base pairing of 8-oxoguanosine and 8-oxo-2'-deoxyguanosine with 2'-deoxyadenosine, 2'-deoxycytosine, 2'-deoxyguanosine, and thymidine.
    Gannett PM; Sura TP
    Chem Res Toxicol; 1993; 6(5):690-700. PubMed ID: 8292748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3'-ends of siRNAs.
    Hamada M; Ohtsuka T; Kawaida R; Koizumi M; Morita K; Furukawa H; Imanishi T; Miyagishi M; Taira K
    Antisense Nucleic Acid Drug Dev; 2002 Oct; 12(5):301-9. PubMed ID: 12477280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure, stability and in vitro RNAi activity of oligoribonucleotides containing the ribo-difluorotoluyl nucleotide: insights into substrate requirements by the human RISC Ago2 enzyme.
    Li F; Pallan PS; Maier MA; Rajeev KG; Mathieu SL; Kreutz C; Fan Y; Sanghvi J; Micura R; Rozners E; Manoharan M; Egli M
    Nucleic Acids Res; 2007; 35(19):6424-38. PubMed ID: 17881374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection.
    Sano M; Sierant M; Miyagishi M; Nakanishi M; Takagi Y; Sutou S
    Nucleic Acids Res; 2008 Oct; 36(18):5812-21. PubMed ID: 18782830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA interference induced by siRNAs modified with 4'-thioribonucleosides in cultured mammalian cells.
    Hoshika S; Minakawa N; Kamiya H; Harashima H; Matsuda A
    FEBS Lett; 2005 Jun; 579(14):3115-8. PubMed ID: 15919084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Straightening of bulged RNA by the double-stranded RNA-binding domain from the protein kinase PKR.
    Zheng X; Bevilacqua PC
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14162-7. PubMed ID: 11114159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of PKR with single-stranded RNA.
    Mayo CB; Cole JL
    Sci Rep; 2017 Jun; 7(1):3335. PubMed ID: 28611419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupling of RNA binding and PKR kinase activation by viral inhibitor RNAs.
    McKenna SA; Kim I; Liu CW; Puglisi JD
    J Mol Biol; 2006 May; 358(5):1270-85. PubMed ID: 16580685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of the protein kinase PKR by short double-stranded RNAs with single-stranded tails.
    Zheng X; Bevilacqua PC
    RNA; 2004 Dec; 10(12):1934-45. PubMed ID: 15547138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Base modification strategies to modulate immune stimulation by an siRNA.
    Valenzuela RA; Suter SR; Ball-Jones AA; Ibarra-Soza JM; Zheng Y; Beal PA
    Chembiochem; 2015 Jan; 16(2):262-7. PubMed ID: 25487859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steric restrictions of RISC in RNA interference identified with size-expanded RNA nucleobases.
    Hernández AR; Peterson LW; Kool ET
    ACS Chem Biol; 2012 Aug; 7(8):1454-61. PubMed ID: 22646660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.