These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21452818)

  • 1. A convergent total synthesis of (±)-γ-rubromycin.
    Wu KL; Mercado EV; Pettus TR
    J Am Chem Soc; 2011 Apr; 133(16):6114-7. PubMed ID: 21452818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A convergent total synthesis of the telomerase inhibitor (±)-γ-rubromycin.
    Wilsdorf M; Reissig HU
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4332-6. PubMed ID: 24623604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total synthesis of (±)-δ-rubromycin.
    Wang W; Xue J; Tian T; Zhang J; Wei L; Shao J; Xie Z; Li Y
    Org Lett; 2013 May; 15(10):2402-5. PubMed ID: 23635026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of (±)-γ-rubromycin via a new hypoiodite-catalytic oxidative cycloetherification.
    Wei L; Xue J; Liu H; Wang W; Li Y
    Org Lett; 2012 Oct; 14(20):5302-5. PubMed ID: 23050595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of naphthoquinone spiroketals by diastereoselective oxidative [3 + 2] cycloaddition.
    Wu KL; Wilkinson S; Reich NO; Pettus TR
    Org Lett; 2007 Dec; 9(26):5537-40. PubMed ID: 18044909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective oxidation of 8,8'-hydroxylated binaphthols to bis-spironaphthalenones or binaphtho-para- and binaphtho-ortho-quinones.
    Podlesny EE; Carroll PJ; Kozlowski MC
    Org Lett; 2012 Sep; 14(18):4862-5. PubMed ID: 22938592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spongipyran Synthetic Studies. Total Synthesis of (+)-Spongistatin 2.
    Smith AB; Lin Q; Doughty VA; Zhuang L; McBriar MD; Kerns JK; Boldi AM; Murase N; Moser WH; Brook CS; Bennett CS; Nakayama K; Sobukawa M; Lee Trout RE
    Tetrahedron; 2009 Aug; 65(33):6470-6488. PubMed ID: 20161196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. γ-Carbonyl quinones: radical strategy for the synthesis of evelynin and its analogues by C-H activation of quinones using cyclopropanols.
    Ilangovan A; Saravanakumar S; Malayappasamy S
    Org Lett; 2013 Oct; 15(19):4968-71. PubMed ID: 24047506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of the naphthalene portion of the rubromycins.
    Xie X; Kozlowski MC
    Org Lett; 2001 Aug; 3(17):2661-3. PubMed ID: 11506603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total synthesis of (+/-)-gamma-rubromycin on the basis of two aromatic Pummerer-type reactions.
    Akai S; Kakiguchi K; Nakamura Y; Kuriwaki I; Dohi T; Harada S; Kubo O; Morita N; Kita Y
    Angew Chem Int Ed Engl; 2007; 46(39):7458-61. PubMed ID: 17702074
    [No Abstract]   [Full Text] [Related]  

  • 11. Synthesis of electron deficient 5,6-aryloxy spiroketals.
    Lindsey CC; Wu KL; Pettus TR
    Org Lett; 2006 May; 8(11):2365-7. PubMed ID: 16706527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regioselective oxidation of phenols to o-quinones with o-iodoxybenzoic acid (IBX).
    Magdziak D; Rodriguez AA; Van De Water RW; Pettus TR
    Org Lett; 2002 Jan; 4(2):285-8. PubMed ID: 11796071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of human telomerase by rubromycins: implication of spiroketal system of the compounds as an active moiety.
    Ueno T; Takahashi H; Oda M; Mizunuma M; Yokoyama A; Goto Y; Mizushina Y; Sakaguchi K; Hayashi H
    Biochemistry; 2000 May; 39(20):5995-6002. PubMed ID: 10821671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New strategies for natural products containing chroman spiroketals.
    Green JC; Burnett GL; Pettus TR
    Pure Appl Chem; 2012; 84(7):1621-1631. PubMed ID: 25554712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient formal synthesis of the human telomerase inhibitor (+/-)-gamma-rubromycin.
    Rathwell DC; Yang SH; Tsang KY; Brimble MA
    Angew Chem Int Ed Engl; 2009; 48(43):7996-8000. PubMed ID: 19644991
    [No Abstract]   [Full Text] [Related]  

  • 16. First enantiospecific synthesis of marine sesquiterpene quinol akaol A.
    Alvarez-Manzaneda E; Chahboun R; Alvarez E; Fernández A; Alvarez-Manzaneda R; Haidour A; Ramos JM; Akhaouzan A
    Chem Commun (Camb); 2012 Jan; 48(4):606-8. PubMed ID: 22073392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic spiroketal formation via oxidative rearrangement of pentangular polyketides.
    Frensch B; Lechtenberg T; Kather M; Yunt Z; Betschart M; Kammerer B; Lüdeke S; Müller M; Piel J; Teufel R
    Nat Commun; 2021 Mar; 12(1):1431. PubMed ID: 33664266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of a sonogashira-acetylide coupling strategy for the synthesis of the aromatic spiroketal skeleton of gamma-rubromycin.
    Tsang KY; Brimble MA; Bremner JB
    Org Lett; 2003 Nov; 5(23):4425-7. PubMed ID: 14602016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploitation of a tuned oxidation with N-haloimides in the synthesis of caulibugulones A-D.
    Naciuk FF; Milan JC; Andreão A; Miranda PC
    J Org Chem; 2013 May; 78(10):5026-30. PubMed ID: 23617309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model Reactions for the Enantioselective Synthesis of γ-Rubromycin: Stereospecific Intramolecular Photoredox Cyclization of an ortho-Quinone Ether to a Spiroacetal.
    Wakita F; Ando Y; Ohmori K; Suzuki K
    Org Lett; 2018 Jul; 20(13):3928-3932. PubMed ID: 29932661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.