These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21452871)

  • 1. Synthetic approach to stop-codon scanning mutagenesis.
    Nie L; Lavinder JJ; Sarkar M; Stephany K; Magliery TJ
    J Am Chem Soc; 2011 Apr; 133(16):6177-86. PubMed ID: 21452871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TrimerDimer: an oligonucleotide-based saturation mutagenesis approach that removes redundant and stop codons.
    Gaytán P; Contreras-Zambrano C; Ortiz-Alvarado M; Morales-Pablos A; Yáñez J
    Nucleic Acids Res; 2009 Oct; 37(18):e125. PubMed ID: 19783828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of DMT-mononucleotide and Fmoc-trinucleotide phosphoramidites in oligonucleotide synthesis affords an automatable codon-level mutagenesis method.
    Gaytán P; Yañez J; Sánchez F; Mackie H; Soberón X
    Chem Biol; 1998 Sep; 5(9):519-27. PubMed ID: 9751646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthogonal combinatorial mutagenesis: a codon-level combinatorial mutagenesis method useful for low multiplicity and amino acid-scanning protocols.
    Gaytán P; Yáñez J; Sánchez F; Soberón X
    Nucleic Acids Res; 2001 Feb; 29(3):E9. PubMed ID: 11160911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general method for scanning unnatural amino acid mutagenesis.
    Daggett KA; Layer M; Cropp TA
    ACS Chem Biol; 2009 Feb; 4(2):109-13. PubMed ID: 19199564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amber Suppression Technology for Mapping Site-specific Viral-host Protein Interactions in Mammalian Cells.
    Isa NF; Bensaude O; Murphy S
    Bio Protoc; 2022 Feb; 12(3):e4315. PubMed ID: 35284605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and structural analysis of the ColE1 Rop (Rom) protein.
    Castagnoli L; Scarpa M; Kokkinidis M; Banner DW; Tsernoglou D; Cesareni G
    EMBO J; 1989 Feb; 8(2):621-9. PubMed ID: 2721494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific insertion of spin-labeled L-amino acids in Xenopus oocytes.
    Shafer AM; Kálai T; Bin Liu SQ; Hideg K; Voss JC
    Biochemistry; 2004 Jul; 43(26):8470-82. PubMed ID: 15222758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fast mutagenesis procedure to recover soluble and functional scFvs containing amber stop codons from synthetic and semisynthetic antibody libraries.
    Barderas R; Shochat S; Martínez-Torrecuadrada J; Altschuh D; Meloen R; Ignacio Casal J
    J Immunol Methods; 2006 May; 312(1-2):182-9. PubMed ID: 16674972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general strategy for random insertion and substitution mutagenesis: substoichiometric coupling of trinucleotide phosphoramidites.
    Sondek J; Shortle D
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3581-5. PubMed ID: 1565654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking an easily detectable phenotype to the folding of a common structural motif. Selection of rare turn mutations that prevent the folding of Rop.
    Castagnoli L; Vetriani C; Cesareni G
    J Mol Biol; 1994 Apr; 237(4):378-87. PubMed ID: 8151699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the six nucleotides downstream of the stop codon on translation termination.
    Namy O; Hatin I; Rousset JP
    EMBO Rep; 2001 Sep; 2(9):787-93. PubMed ID: 11520858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutagenesis using trinucleotide beta-cyanoethyl phosphoramidites.
    Lyttle MH; Napolitano EW; Calio BL; Kauvar LM
    Biotechniques; 1995 Aug; 19(2):274-81. PubMed ID: 8527149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro selection for sense codon suppression.
    Frankel A; Roberts RW
    RNA; 2003 Jul; 9(7):780-6. PubMed ID: 12810911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial codon-based amino acid substitutions.
    Yáñez J; Argüello M; Osuna J; Soberón X; Gaytán P
    Nucleic Acids Res; 2004 Nov; 32(20):e158. PubMed ID: 15537836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cell-based screen for function of the four-helix bundle protein Rop: a new tool for combinatorial experiments in biophysics.
    Magliery TJ; Regan L
    Protein Eng Des Sel; 2004 Jan; 17(1):77-83. PubMed ID: 14985540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of ColE1 RNA-RNA mismatch mutations in vivo by the ColE1 Rop protein.
    Dooley TP; Polisky B
    Plasmid; 1987 Jul; 18(1):24-34. PubMed ID: 2447599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance assignments of wild-type and two cysteine-free variants of the four-helix bundle protein, Rop.
    Bowles DP; Yuan C; Stephany KR; Lavinder JJ; Hansen AL; Magliery TJ
    Biomol NMR Assign; 2018 Oct; 12(2):345-350. PubMed ID: 30159810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Codon-based mutagenesis using dimer-phosphoramidites.
    Neuner P; Cortese R; Monaci P
    Nucleic Acids Res; 1998 Mar; 26(5):1223-7. PubMed ID: 9469829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unnatural amino acid replacement in a yeast G protein-coupled receptor in its native environment.
    Huang LY; Umanah G; Hauser M; Son C; Arshava B; Naider F; Becker JM
    Biochemistry; 2008 May; 47(20):5638-48. PubMed ID: 18419133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.