These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 21452915)

  • 1. Evidence suggesting that the cardiomyocyte circadian clock modulates responsiveness of the heart to hypertrophic stimuli in mice.
    Durgan DJ; Tsai JY; Grenett MH; Pat BM; Ratcliffe WF; Villegas-Montoya C; Garvey ME; Nagendran J; Dyck JR; Bray MS; Gamble KL; Gimble JM; Young ME
    Chronobiol Int; 2011 Apr; 28(3):187-203. PubMed ID: 21452915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic disruption of the cardiomyocyte circadian clock differentially influences insulin-mediated processes in the heart.
    McGinnis GR; Tang Y; Brewer RA; Brahma MK; Stanley HL; Shanmugam G; Rajasekaran NS; Rowe GC; Frank SJ; Wende AR; Abel ED; Taegtmeyer H; Litovsky S; Darley-Usmar V; Zhang J; Chatham JC; Young ME
    J Mol Cell Cardiol; 2017 Sep; 110():80-95. PubMed ID: 28736261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotinylation: a novel posttranslational modification linking cell autonomous circadian clocks with metabolism.
    He L; Hamm JA; Reddy A; Sams D; Peliciari-Garcia RA; McGinnis GR; Bailey SM; Chow CW; Rowe GC; Chatham JC; Young ME
    Am J Physiol Heart Circ Physiol; 2016 Jun; 310(11):H1520-32. PubMed ID: 27084392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of REV-ERBα/β agonism on cardiac gene expression, metabolism, and contractile function in a mouse model of circadian disruption.
    Mia S; Kane MS; Latimer MN; Reitz CJ; Sonkar R; Benavides GA; Smith SR; Frank SJ; Martino TA; Zhang J; Darley-Usmar VM; Young ME
    Am J Physiol Heart Circ Physiol; 2020 Jun; 318(6):H1487-H1508. PubMed ID: 32357113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression.
    Bray MS; Shaw CA; Moore MW; Garcia RA; Zanquetta MM; Durgan DJ; Jeong WJ; Tsai JY; Bugger H; Zhang D; Rohrwasser A; Rennison JH; Dyck JR; Litwin SE; Hardin PE; Chow CW; Chandler MP; Abel ED; Young ME
    Am J Physiol Heart Circ Physiol; 2008 Feb; 294(2):H1036-47. PubMed ID: 18156197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered myocardial metabolic adaptation to increased fatty acid availability in cardiomyocyte-specific CLOCK mutant mice.
    Peliciari-Garcia RA; Goel M; Aristorenas JA; Shah K; He L; Yang Q; Shalev A; Bailey SM; Prabhu SD; Chatham JC; Gamble KL; Young ME
    Biochim Biophys Acta; 2016 Oct; 1861(10):1579-95. PubMed ID: 26721420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disrupting the key circadian regulator CLOCK leads to age-dependent cardiovascular disease.
    Alibhai FJ; LaMarre J; Reitz CJ; Tsimakouridze EV; Kroetsch JT; Bolz SS; Shulman A; Steinberg S; Burris TP; Oudit GY; Martino TA
    J Mol Cell Cardiol; 2017 Apr; 105():24-37. PubMed ID: 28223222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrelationship between 3,5,3´-triiodothyronine and the circadian clock in the rodent heart.
    Peliciari-Garcia RA; Prévide RM; Nunes MT; Young ME
    Chronobiol Int; 2016; 33(10):1444-1454. PubMed ID: 27661292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart.
    Young ME; Brewer RA; Peliciari-Garcia RA; Collins HE; He L; Birky TL; Peden BW; Thompson EG; Ammons BJ; Bray MS; Chatham JC; Wende AR; Yang Q; Chow CW; Martino TA; Gamble KL
    J Biol Rhythms; 2014 Aug; 29(4):257-76. PubMed ID: 25238855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac-specific mutation of Clock alters the quantitative measurements of physical activities without changing behavioral circadian rhythms.
    Ko ML; Shi L; Tsai JY; Young ME; Neuendorff N; Earnest DJ; Ko GY
    J Biol Rhythms; 2011 Oct; 26(5):412-22. PubMed ID: 21921295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O-GlcNAcylation, novel post-translational modification linking myocardial metabolism and cardiomyocyte circadian clock.
    Durgan DJ; Pat BM; Laczy B; Bradley JA; Tsai JY; Grenett MH; Ratcliffe WF; Brewer RA; Nagendran J; Villegas-Montoya C; Zou C; Zou L; Johnson RL; Dyck JR; Bray MS; Gamble KL; Chatham JC; Young ME
    J Biol Chem; 2011 Dec; 286(52):44606-19. PubMed ID: 22069332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short communication: ischemia/reperfusion tolerance is time-of-day-dependent: mediation by the cardiomyocyte circadian clock.
    Durgan DJ; Pulinilkunnil T; Villegas-Montoya C; Garvey ME; Frangogiannis NG; Michael LH; Chow CW; Dyck JR; Young ME
    Circ Res; 2010 Feb; 106(3):546-50. PubMed ID: 20007913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct regulation of myocardial triglyceride metabolism by the cardiomyocyte circadian clock.
    Tsai JY; Kienesberger PC; Pulinilkunnil T; Sailors MH; Durgan DJ; Villegas-Montoya C; Jahoor A; Gonzalez R; Garvey ME; Boland B; Blasier Z; McElfresh TA; Nannegari V; Chow CW; Heird WC; Chandler MP; Dyck JR; Bray MS; Young ME
    J Biol Chem; 2010 Jan; 285(5):2918-29. PubMed ID: 19940111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticipating anticipation: pursuing identification of cardiomyocyte circadian clock function.
    Young ME
    J Appl Physiol (1985); 2009 Oct; 107(4):1339-47. PubMed ID: 19608929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The day/night proteome in the murine heart.
    Podobed P; Pyle WG; Ackloo S; Alibhai FJ; Tsimakouridze EV; Ratcliffe WF; Mackay A; Simpson J; Wright DC; Kirby GM; Young ME; Martino TA
    Am J Physiol Regul Integr Comp Physiol; 2014 Jul; 307(2):R121-37. PubMed ID: 24789993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental effects of constant light on circadian behaviour and gene expressions in zebra finches: Insights into mechanisms of metabolic adaptation to aperiodic environment in diurnal animals.
    Prabhat A; Malik I; Jha NA; Bhardwaj SK; Kumar V
    J Photochem Photobiol B; 2020 Oct; 211():111995. PubMed ID: 32836050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcineurin and its regulator, RCAN1, confer time-of-day changes in susceptibility of the heart to ischemia/reperfusion.
    Rotter D; Grinsfelder DB; Parra V; Pedrozo Z; Singh S; Sachan N; Rothermel BA
    J Mol Cell Cardiol; 2014 Sep; 74():103-11. PubMed ID: 24838101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian Governance of Cardiac Growth.
    Latimer MN; Young ME
    Cells; 2022 Apr; 11(9):. PubMed ID: 35563800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiomyocyte-specific disruption of the circadian BMAL1-REV-ERBα/β regulatory network impacts distinct miRNA species in the murine heart.
    Latimer MN; Williams LJ; Shanmugan G; Carpenter BJ; Lazar MA; Dierickx P; Young ME
    Commun Biol; 2023 Nov; 6(1):1149. PubMed ID: 37952007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disrupted light-dark cycle abolishes circadian expression of peripheral clock genes without inducing behavioral arrhythmicity in mice.
    Oishi K; Higo-Yamamoto S; Yamamoto S; Yasumoto Y
    Biochem Biophys Res Commun; 2015 Mar; 458(2):256-61. PubMed ID: 25645021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.