These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21452979)

  • 1. Large-scale exploration of bioisosteric replacements on the basis of matched molecular pairs.
    Wassermann AM; Bajorath J
    Future Med Chem; 2011 Mar; 3(4):425-36. PubMed ID: 21452979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico identification of bioisosteric functional groups.
    Ertl P
    Curr Opin Drug Discov Devel; 2007 May; 10(3):281-8. PubMed ID: 17554854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.
    Hartenfeller M; Proschak E; Schüller A; Schneider G
    Chem Biol Drug Des; 2008 Jul; 72(1):16-26. PubMed ID: 18564216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Isostere Database: a web-based tool using quantum chemical topology to predict bioisosteric replacements for drug design.
    Devereux M; Popelier PL; McLay IM
    J Chem Inf Model; 2009 Jun; 49(6):1497-513. PubMed ID: 19453153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural products and combinatorial chemistry: back to the future.
    Ortholand JY; Ganesan A
    Curr Opin Chem Biol; 2004 Jun; 8(3):271-80. PubMed ID: 15183325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and potency relationships between scaffolds of compounds active against human targets.
    Hu Y; Bajorath J
    ChemMedChem; 2010 Oct; 5(10):1681-5. PubMed ID: 20721999
    [No Abstract]   [Full Text] [Related]  

  • 7. Data structures and computational tools for the extraction of SAR information from large compound sets.
    Wawer M; Lounkine E; Wassermann AM; Bajorath J
    Drug Discov Today; 2010 Aug; 15(15-16):630-9. PubMed ID: 20547243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do medicinal chemists learn from activity cliffs? A systematic evaluation of cliff progression in evolving compound data sets.
    Dimova D; Heikamp K; Stumpfe D; Bajorath J
    J Med Chem; 2013 Apr; 56(8):3339-45. PubMed ID: 23527828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning from the data: mining of large high-throughput screening databases.
    Yan SF; King FJ; He Y; Caldwell JS; Zhou Y
    J Chem Inf Model; 2006; 46(6):2381-95. PubMed ID: 17125181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible 3D pharmacophores as descriptors of dynamic biological space.
    Nettles JH; Jenkins JL; Williams C; Clark AM; Bender A; Deng Z; Davies JW; Glick M
    J Mol Graph Model; 2007 Oct; 26(3):622-33. PubMed ID: 17395510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient exploration of large combinatorial chemistry spaces by monomer-based similarity searching.
    Yu N; Bakken GA
    J Chem Inf Model; 2009 Apr; 49(4):745-55. PubMed ID: 19309177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MMP-Cliffs: systematic identification of activity cliffs on the basis of matched molecular pairs.
    Hu X; Hu Y; Vogt M; Stumpfe D; Bajorath J
    J Chem Inf Model; 2012 May; 52(5):1138-45. PubMed ID: 22489665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voyages to the (un)known: adaptive design of bioactive compounds.
    Schneider G; Hartenfeller M; Reutlinger M; Tanrikulu Y; Proschak E; Schneider P
    Trends Biotechnol; 2009 Jan; 27(1):18-26. PubMed ID: 19004513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From structure-activity to structure-selectivity relationships: quantitative assessment, selectivity cliffs, and key compounds.
    Peltason L; Hu Y; Bajorath J
    ChemMedChem; 2009 Nov; 4(11):1864-73. PubMed ID: 19750525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico techniques for the identification of bioisosteric replacements for drug design.
    Devereux M; Popelier PL
    Curr Top Med Chem; 2010; 10(6):657-68. PubMed ID: 20337588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basic overview of chemoinformatics.
    Engel T
    J Chem Inf Model; 2006; 46(6):2267-77. PubMed ID: 17125169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Informative library design as an efficient strategy to identify and optimize leads: application to cyclin-dependent kinase 2 antagonists.
    Bradley EK; Miller JL; Saiah E; Grootenhuis PD
    J Med Chem; 2003 Sep; 46(20):4360-4. PubMed ID: 13678414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of individual compounds forming activity cliffs using emerging chemical patterns.
    Namasivayam V; Iyer P; Bajorath J
    J Chem Inf Model; 2013 Dec; 53(12):3131-9. PubMed ID: 24304008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioisosteric similarity of molecules based on structural alignment and observed chemical replacements in drugs.
    Krier M; Hutter MC
    J Chem Inf Model; 2009 May; 49(5):1280-97. PubMed ID: 19402687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cluster-based strategy for assessing the overlap between large chemical libraries and its application to a recent acquisition.
    Engels MF; Gibbs AC; Jaeger EP; Verbinnen D; Lobanov VS; Agrafiotis DK
    J Chem Inf Model; 2006; 46(6):2651-60. PubMed ID: 17125205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.