BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 21452982)

  • 1. What has polar surface area ever done for drug discovery?
    Clark DE
    Future Med Chem; 2011 Mar; 3(4):469-84. PubMed ID: 21452982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysing molecular polar surface descriptors to predict blood-brain barrier permeation.
    Shityakov S; Neuhaus W; Dandekar T; Förster C
    Int J Comput Biol Drug Des; 2013; 6(1-2):146-56. PubMed ID: 23428480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting penetration across the blood-brain barrier from simple descriptors and fragmentation schemes.
    Zhao YH; Abraham MH; Ibrahim A; Fish PV; Cole S; Lewis ML; de Groot MJ; Reynolds DP
    J Chem Inf Model; 2007; 47(1):170-5. PubMed ID: 17238262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Free-Wilson selectivity analysis for combinatorial library design.
    Sciabola S; Stanton RV; Johnson TL; Xi H
    Methods Mol Biol; 2011; 685():91-109. PubMed ID: 20981520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADME evaluation in drug discovery. 5. Correlation of Caco-2 permeation with simple molecular properties.
    Hou TJ; Zhang W; Xia K; Qiao XB; Xu XJ
    J Chem Inf Comput Sci; 2004; 44(5):1585-600. PubMed ID: 15446816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of ADME properties with substructure pattern recognition.
    Shen J; Cheng F; Xu Y; Li W; Tang Y
    J Chem Inf Model; 2010 Jun; 50(6):1034-41. PubMed ID: 20578727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overview of computational methods employed in early-stage drug discovery.
    Skjevik AA; Teigen K; Martinez A
    Future Med Chem; 2009 Apr; 1(1):49-63. PubMed ID: 21426070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational approaches to discovery of orally active and brain-penetrable quinazolinone inhibitors of poly(ADP-ribose)polymerase.
    Hattori K; Kido Y; Yamamoto H; Ishida J; Kamijo K; Murano K; Ohkubo M; Kinoshita T; Iwashita A; Mihara K; Yamazaki S; Matsuoka N; Teramura Y; Miyake H
    J Med Chem; 2004 Aug; 47(17):4151-4. PubMed ID: 15293985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaussian processes for classification: QSAR modeling of ADMET and target activity.
    Obrezanova O; Segall MD
    J Chem Inf Model; 2010 Jun; 50(6):1053-61. PubMed ID: 20433177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synergy between combinatorial chemistry and high-throughput screening.
    Diller DJ
    Curr Opin Drug Discov Devel; 2008 May; 11(3):346-55. PubMed ID: 18428088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The calculation of polar surface area from first principles: an application of quantum chemical topology to drug design.
    Bytheway I; Darley MG; Popelier PL
    ChemMedChem; 2008 Mar; 3(3):445-53. PubMed ID: 18161739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinase-targeted library design through the application of the PharmPrint methodology.
    Deanda F; Stewart EL; Reno MJ; Drewry DH
    J Chem Inf Model; 2008 Dec; 48(12):2395-403. PubMed ID: 19053525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary combinatorial chemistry, a novel tool for SAR studies on peptide transport across the blood-brain barrier. Part 2. Design, synthesis and evaluation of a first generation of peptides.
    Teixidó M; Belda I; Zurita E; Llorà X; Fabre M; Vilaró S; Albericio F; Giralt E
    J Pept Sci; 2005 Dec; 11(12):789-804. PubMed ID: 15942930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The application of flow microreactors to the preparation of a family of casein kinase I inhibitors.
    Venturoni F; Nikbin N; Ley SV; Baxendale IR
    Org Biomol Chem; 2010 Apr; 8(8):1798-806. PubMed ID: 20449482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of combinatorial chemistry on drug discovery.
    Lee A; Breitenbucher JG
    Curr Opin Drug Discov Devel; 2003 Jul; 6(4):494-508. PubMed ID: 12951813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of topochemical models for the prediction of permeability through the blood-brain barrier.
    Dureja H; Madan AK
    Acta Pharm; 2007 Dec; 57(4):451-67. PubMed ID: 18165189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of novel CDK1 inhibitors by combining pharmacophore modeling, QSAR analysis and in silico screening followed by in vitro bioassay.
    Al-Sha'er MA; Taha MO
    Eur J Med Chem; 2010 Sep; 45(9):4316-30. PubMed ID: 20638755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinase array design, back to front: biaryl amides.
    Baldwin I; Bamborough P; Haslam CG; Hunjan SS; Longstaff T; Mooney CJ; Patel S; Quinn J; Somers DO
    Bioorg Med Chem Lett; 2008 Oct; 18(19):5285-9. PubMed ID: 18789685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computation of the physio-chemical properties and data mining of large molecular collections.
    Cheng A; Diller DJ; Dixon SL; Egan WJ; Lauri G; Merz KM
    J Comput Chem; 2002 Jan; 23(1):172-83. PubMed ID: 11913384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights for predicting blood-brain barrier penetration of CNS targeted molecules using QSPR approaches.
    Fan Y; Unwalla R; Denny RA; Di L; Kerns EH; Diller DJ; Humblet C
    J Chem Inf Model; 2010 Jun; 50(6):1123-33. PubMed ID: 20578728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.