These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21453542)

  • 1. WildSpan: mining structured motifs from protein sequences.
    Hsu CM; Chen CY; Liu BJ
    Algorithms Mol Biol; 2011 Mar; 6(1):6. PubMed ID: 21453542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of hot regions in protein-protein interactions by sequential pattern mining.
    Hsu CM; Chen CY; Liu BJ; Huang CC; Laio MH; Lin CC; Wu TL
    BMC Bioinformatics; 2007 May; 8 Suppl 5(Suppl 5):S8. PubMed ID: 17570867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAGIIC-PRO: detecting functional signatures by efficient discovery of long patterns in protein sequences.
    Hsu CM; Chen CY; Liu BJ
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W356-61. PubMed ID: 16845025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MAGIIC-PRO: detecting functional signatures by efficient discovery of long patterns in protein sequences.
    Hsu CM; Chen CY; Liu BJ
    Nucleic Acids Res; 2008 Mar; 36(4):1400-6. PubMed ID: 18314547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PMBC: pattern mining from biological sequences with wildcard constraints.
    Wu X; Zhu X; He Y; Arslan AN
    Comput Biol Med; 2013 Jun; 43(5):481-92. PubMed ID: 23566394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient mining gapped sequential patterns for motifs in biological sequences.
    Liao V; Chen MS
    BMC Syst Biol; 2013; 7 Suppl 4(Suppl 4):S7. PubMed ID: 24565366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motif-All: discovering all phosphorylation motifs.
    He Z; Yang C; Guo G; Li N; Yu W
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S22. PubMed ID: 21342552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MAIL: mining sequential patterns with wildcards.
    Xie F; Wu X; Hu X; Gao J; Guo D; Fei Y; Hua E
    Int J Data Min Bioinform; 2013; 8(1):1-23. PubMed ID: 23865162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ARCS-Motif: discovering correlated motifs from unaligned biological sequences.
    Zhang S; Su W; Yang J
    Bioinformatics; 2009 Jan; 25(2):183-9. PubMed ID: 19073591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. E1DS: catalytic site prediction based on 1D signatures of concurrent conservation.
    Chien TY; Chang DT; Chen CY; Weng YZ; Hsu CM
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W291-6. PubMed ID: 18524800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering metric temporal constraint networks on temporal databases.
    Álvarez MR; Félix P; Cariñena P
    Artif Intell Med; 2013 Jul; 58(3):139-54. PubMed ID: 23660232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural study for the optimisation of functional motifs encoded in protein sequences.
    Via A; Helmer-Citterich M
    BMC Bioinformatics; 2004 Apr; 5():50. PubMed ID: 15119965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering interesting motif-sets for multi-class protein sequence classification.
    Ma PC; Chan KC
    J Comput Biol; 2010 May; 17(5):733-43. PubMed ID: 20500024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IncMD: incremental trie-based structural motif discovery algorithm.
    Badr G; Al-Turaiki I; Turcotte M; Mathkour H
    J Bioinform Comput Biol; 2014 Oct; 12(5):1450027. PubMed ID: 25362841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EXMOTIF: efficient structured motif extraction.
    Zhang Y; Zaki MJ
    Algorithms Mol Biol; 2006 Nov; 1():21. PubMed ID: 17109757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. seeMotif: exploring and visualizing sequence motifs in 3D structures.
    Chang DT; Chien TY; Chen CY
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W552-8. PubMed ID: 19477961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational annotation of UTR cis-regulatory modules through Frequent Pattern Mining.
    Turi A; Loglisci C; Salvemini E; Grillo G; Malerba D; D'Elia D
    BMC Bioinformatics; 2009 Jun; 10 Suppl 6(Suppl 6):S25. PubMed ID: 19534751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient method for mining cross-timepoint gene regulation sequential patterns from time course gene expression datasets.
    Cheng CP; Liu YC; Tsai YL; Tseng VS
    BMC Bioinformatics; 2013; 14 Suppl 12(Suppl 12):S3. PubMed ID: 24267918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of generic spaced motifs using submotif pattern mining.
    Wijaya E; Rajaraman K; Yiu SM; Sung WK
    Bioinformatics; 2007 Jun; 23(12):1476-85. PubMed ID: 17483509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing motif correlations in proteins.
    Horng JT; Huang HD; Wang SH; Chen MY; Huang SL; Hwang JK
    J Comput Chem; 2003 Dec; 24(16):2032-43. PubMed ID: 14531057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.