These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21453542)

  • 41. Predicting RNA-binding residues from evolutionary information and sequence conservation.
    Huang YF; Chiu LY; Huang CC; Huang CK
    BMC Genomics; 2010 Dec; 11 Suppl 4(Suppl 4):S2. PubMed ID: 21143803
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Discovering fuzzy time-interval sequential patterns in sequence databases.
    Chen YL; Huang TC
    IEEE Trans Syst Man Cybern B Cybern; 2005 Oct; 35(5):959-72. PubMed ID: 16240771
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Top-k Self-Adaptive Contrast Sequential Pattern Mining.
    Wu Y; Wang Y; Li Y; Zhu X; Wu X
    IEEE Trans Cybern; 2022 Nov; 52(11):11819-11833. PubMed ID: 34143749
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Finding motifs with insufficient number of strong binding sites.
    Leung HC; Chin FY; Yiu SM; Rosenfeld R; Tsang WW
    J Comput Biol; 2005; 12(6):686-701. PubMed ID: 16108711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein structure mining using a structural alphabet.
    Tyagi M; de Brevern AG; Srinivasan N; Offmann B
    Proteins; 2008 May; 71(2):920-37. PubMed ID: 18004784
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using CLUSTAL for multiple sequence alignments.
    Higgins DG; Thompson JD; Gibson TJ
    Methods Enzymol; 1996; 266():383-402. PubMed ID: 8743695
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient algorithms for biological stems search.
    Mi T; Rajasekaran S
    BMC Bioinformatics; 2013 May; 14():161. PubMed ID: 23679045
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs.
    Seitzer P; Wilbanks EG; Larsen DJ; Facciotti MT
    BMC Bioinformatics; 2012 Nov; 13():317. PubMed ID: 23181585
    [TBL] [Abstract][Full Text] [Related]  

  • 49. eBLOCKs: enumerating conserved protein blocks to achieve maximal sensitivity and specificity.
    Su QJ; Lu L; Saxonov S; Brutlag DL
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D178-82. PubMed ID: 15608172
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MpBsmi: A new algorithm for the recognition of continuous biological sequence pattern based on index structure.
    Li W; Ren J
    PLoS One; 2018; 13(4):e0195601. PubMed ID: 29684052
    [TBL] [Abstract][Full Text] [Related]  

  • 51. EMS3: An Improved Algorithm for Finding Edit-Distance Based Motifs.
    Xiao P; Cai X; Rajasekaran S
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):27-37. PubMed ID: 32931433
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RefSelect: a reference sequence selection algorithm for planted (l, d) motif search.
    Yu Q; Huo H; Zhao R; Feng D; Vitter JS; Huan J
    BMC Bioinformatics; 2016 Jul; 17 Suppl 9(Suppl 9):266. PubMed ID: 27454113
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TrieAMD: a scalable and efficient apriori motif discovery approach.
    Al-Turaiki I; Badr G; Mathkour H
    Int J Data Min Bioinform; 2015; 13(1):13-30. PubMed ID: 26529905
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Discriminative motif discovery in DNA and protein sequences using the DEME algorithm.
    Redhead E; Bailey TL
    BMC Bioinformatics; 2007 Oct; 8():385. PubMed ID: 17937785
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient sequential and parallel algorithms for finding edit distance based motifs.
    Pal S; Xiao P; Rajasekaran S
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):465. PubMed ID: 27557423
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discovering active motifs in sets of related protein sequences and using them for classification.
    Wang JT; Marr TG; Shasha D; Shapiro BA; Chirn GW
    Nucleic Acids Res; 1994 Jul; 22(14):2769-75. PubMed ID: 8052532
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Finding Possible Promoter Binding Sites in DNA Sequences by Sequential Patterns Mining With Specific Numbers of Gaps.
    Ke YH; Huang JW; Lin WC; Jaysawal BP
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2459-2470. PubMed ID: 32175870
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mining protein loops using a structural alphabet and statistical exceptionality.
    Regad L; Martin J; Nuel G; Camproux AC
    BMC Bioinformatics; 2010 Feb; 11():75. PubMed ID: 20132552
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An Efficient Incremental Mining Algorithm for Discovering Sequential Pattern in Wireless Sensor Network Environments.
    Lyu X; Ma H
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577676
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Discovering sequence motifs.
    Bailey TL
    Methods Mol Biol; 2007; 395():271-92. PubMed ID: 17993680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.