BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21453921)

  • 1. Investigation of optimal follower load path generated by trunk muscle coordination.
    Kim K; Kim YH; Lee S
    J Biomech; 2011 May; 44(8):1614-7. PubMed ID: 21453921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of trunk muscles in generating follower load in the lumbar spine of neutral standing posture.
    Kim K; Kim YH
    J Biomech Eng; 2008 Aug; 130(4):041005. PubMed ID: 18601447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A non-optimized follower load path may cause considerable intervertebral rotations.
    Dreischarf M; Zander T; Bergmann G; Rohlmann A
    J Biomech; 2010 Sep; 43(13):2625-8. PubMed ID: 20541208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.
    Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG
    Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal muscles can create compressive follower loads in the lumbar spine in a neutral standing posture.
    Han KS; Rohlmann A; Yang SJ; Kim BS; Lim TH
    Med Eng Phys; 2011 May; 33(4):472-8. PubMed ID: 21163681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of compressive follower load on spine in a simplified dynamic state: a simulation study.
    Kim BS; Lim TH; Kwon TK; Han KS
    Biomed Mater Eng; 2014; 24(6):2319-29. PubMed ID: 25226932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk.
    Kingma I; Staudenmann D; van Dieën JH
    J Electromyogr Kinesiol; 2007 Feb; 17(1):14-24. PubMed ID: 16531071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase of load-carrying capacity under follower load generated by trunk muscles in lumbar spine.
    Kim K; Kim YH; Lee S
    Proc Inst Mech Eng H; 2007 Apr; 221(3):229-35. PubMed ID: 17539579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear force allowance in lumbar spine under follower load in neutral standing posture.
    Kim K; Kim YH; Lee S
    Acta Bioeng Biomech; 2010; 12(4):49-53. PubMed ID: 21361256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data.
    Rohlmann A; Bauer L; Zander T; Bergmann G; Wilke HJ
    J Biomech; 2006; 39(6):981-9. PubMed ID: 16549091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle force evaluation and the role of posture in human lumbar spine under compression.
    Shirazi-Adl A; Sadouk S; Parnianpour M; Pop D; El-Rich M
    Eur Spine J; 2002 Dec; 11(6):519-26. PubMed ID: 12522708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine.
    Gagnon D; Arjmand N; Plamondon A; Shirazi-Adl A; Larivière C
    J Biomech; 2011 May; 44(8):1521-9. PubMed ID: 21439569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of load position on muscle forces, internal loads and stability of the human spine in upright postures.
    El-Rich M; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):359-68. PubMed ID: 16393873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ISSLS prize winner: A novel approach to determine trunk muscle forces during flexion and extension: a comparison of data from an in vitro experiment and in vivo measurements.
    Wilke HJ; Rohlmann A; Neller S; Graichen F; Claes L; Bergmann G
    Spine (Phila Pa 1976); 2003 Dec; 28(23):2585-93. PubMed ID: 14652475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Load-sharing in the lumbosacral spine in neutral standing & flexed postures - A combined finite element and inverse static study.
    Liu T; Khalaf K; Naserkhaki S; El-Rich M
    J Biomech; 2018 Mar; 70():43-50. PubMed ID: 29153706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total disc replacement positioning affects facet contact forces and vertebral body strains.
    Rundell SA; Auerbach JD; Balderston RA; Kurtz SM
    Spine (Phila Pa 1976); 2008 Nov; 33(23):2510-7. PubMed ID: 18978591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realistic loading conditions for upper body bending.
    Rohlmann A; Zander T; Rao M; Bergmann G
    J Biomech; 2009 May; 42(7):884-90. PubMed ID: 19268291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of compressive follower preload on the flexion-extension response of the human lumbar spine.
    Patwardhan AG; Havey RM; Carandang G; Simonds J; Voronov LI; Ghanayem AJ; Meade KP; Gavin TM; Paxinos O
    J Orthop Res; 2003 May; 21(3):540-6. PubMed ID: 12706029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.