BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 21453949)

  • 1. Electro-dewatering of wastewater sludge: influence of the operating conditions and their interactions effects.
    Mahmoud A; Olivier J; Vaxelaire J; Hoadley AF
    Water Res; 2011 Apr; 45(9):2795-810. PubMed ID: 21453949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical field: a historical review of its application and contributions in wastewater sludge dewatering.
    Mahmoud A; Olivier J; Vaxelaire J; Hoadley AF
    Water Res; 2010 Apr; 44(8):2381-407. PubMed ID: 20303137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro-dewatering of wastewater sludge: An investigation of the relationship between filtrate flow rate and electric current.
    Olivier J; Conrardy JB; Mahmoud A; Vaxelaire J
    Water Res; 2015 Oct; 82():66-77. PubMed ID: 26304592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: electrical variables analysis.
    Citeau M; Olivier J; Mahmoud A; Vaxelaire J; Larue O; Vorobiev E
    Water Res; 2012 Sep; 46(14):4405-16. PubMed ID: 22748325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of process operating parameters on dryness level and energy saving during wastewater sludge electro-dewatering.
    Mahmoud A; Hoadley AFA; Conrardy JB; Olivier J; Vaxelaire J
    Water Res; 2016 Oct; 103():109-123. PubMed ID: 27448036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally assisted mechanical dewatering (TAMD) of suspensions of fine particles: analysis of the influence of the operating conditions using the response surface methodology.
    Mahmoud A; Fernandez A; Chituchi TM; Arlabosse P
    Chemosphere; 2008 Aug; 72(11):1765-73. PubMed ID: 18571693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of electro-dewatering process performance for activated and digested wastewater sludge.
    Mahmoud A; Hoadley AFA; Citeau M; Sorbet JM; Olivier G; Vaxelaire J; Olivier J
    Water Res; 2018 Feb; 129():66-82. PubMed ID: 29132123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of electro-osmotic dewatering on different types of sewage sludge.
    Visigalli S; Turolla A; Gronchi P; Canziani R
    Environ Res; 2017 Aug; 157():30-36. PubMed ID: 28511078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: influence of operating conditions and the process energetics.
    Wang L; Zhang L; Li A
    Water Res; 2014 Nov; 65():85-97. PubMed ID: 25090626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drying characteristics of electro-osmosis dewatered sludge.
    Ma D; Qian J; Zhu H; Zhai J
    Environ Technol; 2016 Dec; 37(23):3046-54. PubMed ID: 27063252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of polyelectrolyte conditioning on the enhanced dewatering of activated sludge by application of an electric field during the expression phase.
    Saveyn H; Pauwels G; Timmerman R; Van der Meeren P
    Water Res; 2005 Aug; 39(13):3012-20. PubMed ID: 15993464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced sludge dewatering by electrofiltration. A feasibility study.
    Saveyn H; Huybregts L; Van der Meeren P
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):71-8. PubMed ID: 15954565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter investigation for decentralised dewatering and solar thermic drying of sludge.
    Wett B; Demattio M; Becker W
    Water Sci Technol; 2005; 51(10):65-73. PubMed ID: 16104407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of salt, pH and polyelectrolyte on the pressure electro-dewatering of sewage sludge.
    Citeau M; Larue O; Vorobiev E
    Water Res; 2011 Mar; 45(6):2167-80. PubMed ID: 21334041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dewaterability and energy consumption model construction by comparison of electro-dewatering for industry sludges and river sediments.
    Wu P; Pi K; Shi Y; Li P; Wang Z; Zhang H; Liu D; Gerson AR
    Environ Res; 2020 May; 184():109335. PubMed ID: 32169737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Migration and distribution of sodium ions and organic matters during electro-dewatering of waste activated sludge at different dosages of sodium sulfate.
    Xiao J; Wu X; Yu W; Liang S; Yu J; Gu Y; Deng H; Hu J; Xiao K; Yang J
    Chemosphere; 2017 Dec; 189():67-75. PubMed ID: 28926790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electro-dewatering of sewage sludge: Influence of combined action of constant current and constant voltage on performance and energy consumption.
    Qian X; Zhou X; Wu J; Liu C; Wei Y; Liu J
    Sci Total Environ; 2019 Jun; 667():751-760. PubMed ID: 30851608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy demand in sludge dewatering.
    Chu CP; Lee DJ; Chang CY
    Water Res; 2005 May; 39(9):1858-68. PubMed ID: 15899284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compression and swelling of activated sludge cakes during dewatering.
    Sveegaard SG; Keiding K; Christensen ML
    Water Res; 2012 Oct; 46(16):4999-5008. PubMed ID: 22819870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.