BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21454069)

  • 1. One-step fabrication of membraneless microbial fuel cell cathode by electropolymerization of polypyrrole onto stainless steel mesh.
    Feng C; Wan Q; Lv Z; Yue X; Chen Y; Wei C
    Biosens Bioelectron; 2011 May; 26(9):3953-7. PubMed ID: 21454069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells.
    Feng C; Ma L; Li F; Mai H; Lang X; Fan S
    Biosens Bioelectron; 2010 Feb; 25(6):1516-20. PubMed ID: 19889528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthraquinone-2-sulfonate immobilized to conductive polypyrrole hydrogel as a bioanode to enhance power production in microbial fuel cell.
    Tang X; Ng HY
    Bioresour Technol; 2017 Nov; 244(Pt 1):452-455. PubMed ID: 28800554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors.
    Zhang F; Saito T; Cheng S; Hickner MA; Logan BE
    Environ Sci Technol; 2010 Feb; 44(4):1490-5. PubMed ID: 20099808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of stainless steel mesh gas diffusion electrode for power generation in microbial fuel cell.
    You SJ; Wang XH; Zhang JN; Wang JY; Ren NQ; Gong XB
    Biosens Bioelectron; 2011 Jan; 26(5):2142-6. PubMed ID: 20947329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and application of polypyrrole/carrageenan nano-bio composite as a cathode catalyst in microbial fuel cells.
    Esmaeili C; Ghasemi M; Heng LY; Hassan SHA; Abdi MM; Daud WRW; Ilbeygi H; Ismail AF
    Carbohydr Polym; 2014 Dec; 114():253-259. PubMed ID: 25263889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and operation of freshwater sediment microbial fuel cell for electricity generation.
    Song TS; Yan ZS; Zhao ZW; Jiang HL
    Bioprocess Biosyst Eng; 2011 Jun; 34(5):621-7. PubMed ID: 21221652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells.
    Khilari S; Pandit S; Das D; Pradhan D
    Biosens Bioelectron; 2014 Apr; 54():534-40. PubMed ID: 24333931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dramatic enhancement of organics degradation and electricity generation via strengthening superoxide radical by using a novel 3D AQS/PPy-GF cathode.
    Zhang Y; Li J; Bai J; Li L; Xia L; Chen S; Zhou B
    Water Res; 2017 Nov; 125():259-269. PubMed ID: 28865375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells.
    Chen S; Chen Y; He G; He S; Schröder U; Hou H
    Biosens Bioelectron; 2012 Apr; 34(1):282-5. PubMed ID: 22336437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell.
    Dumas C; Mollica A; Féron D; Basseguy R; Etcheverry L; Bergel A
    Bioresour Technol; 2008 Dec; 99(18):8887-94. PubMed ID: 18558485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced bioelectricity generation and azo dye treatment in a reversible photo-bioelectrochemical cell by using novel anthraquinone-2,6-disulfonate (AQDS)/MnO
    Sun J; Cai B; Xu W; Huang Y; Zhang Y; Peng Y; Chang K; Kuo J; Chen K; Ning X; Liu G; Wang Y; Yang Z; Liu J
    Bioresour Technol; 2017 Feb; 225():40-47. PubMed ID: 27875767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophoretic deposition of multi-walled carbon nanotube on a stainless steel electrode for use in sediment microbial fuel cells.
    Song TS; Peng-Xiao ; Wu XY; Zhou CC
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1241-50. PubMed ID: 23657903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells.
    Tang X; Li H; Du Z; Ng HY
    Bioresour Technol; 2014 Jul; 164():184-8. PubMed ID: 24859209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecularly-imprinted polypyrrole-modified stainless steel frits for selective solid phase preconcentration of ochratoxin A.
    Yu JC; Krushkova S; Lai EP; Dabek-Zlotorzynska E
    Anal Bioanal Chem; 2005 Aug; 382(7):1534-40. PubMed ID: 15951999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the suitability of tungsten, titanium and stainless steel wires as current collectors in microbial fuel cells.
    Sharma I; Ghangrekar MM
    Water Sci Technol; 2018 Feb; 77(3-4):999-1006. PubMed ID: 29488963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel stainless steel mesh/cobalt oxide hybrid electrode for efficient catalysis of oxygen reduction in a microbial fuel cell.
    Gong XB; You SJ; Wang XH; Zhang JN; Gan Y; Ren NQ
    Biosens Bioelectron; 2014 May; 55():237-41. PubMed ID: 24384266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs.
    Hou J; Liu Z; Li Y; Yang S; Zhou Y
    Bioprocess Biosyst Eng; 2015 May; 38(5):881-8. PubMed ID: 25428842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells.
    Zou Y; Pisciotta J; Baskakov IV
    Bioelectrochemistry; 2010 Aug; 79(1):50-6. PubMed ID: 19969509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode.
    Sharma M; Jain P; Varanasi JL; Lal B; Rodríguez J; Lema JM; Sarma PM
    Bioresour Technol; 2013 Dec; 150():172-80. PubMed ID: 24161648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.