BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21454186)

  • 21. Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response.
    Manni S; Brancalion A; Tubi LQ; Colpo A; Pavan L; Cabrelle A; Ave E; Zaffino F; Di Maira G; Ruzzene M; Adami F; Zambello R; Pitari MR; Tassone P; Pinna LA; Gurrieri C; Semenzato G; Piazza F
    Clin Cancer Res; 2012 Apr; 18(7):1888-900. PubMed ID: 22351691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat shock proteins as a new, promising target of multiple myeloma therapy.
    Grosicki S; Bednarczyk M; Janikowska G
    Expert Rev Hematol; 2020 Feb; 13(2):117-126. PubMed ID: 31971027
    [No Abstract]   [Full Text] [Related]  

  • 23. Targeting focal adhesion kinase with dominant-negative FRNK or Hsp90 inhibitor 17-DMAG suppresses tumor growth and metastasis of SiHa cervical xenografts.
    Schwock J; Dhani N; Cao MP; Zheng J; Clarkson R; Radulovich N; Navab R; Horn LC; Hedley DW
    Cancer Res; 2009 Jun; 69(11):4750-9. PubMed ID: 19458065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting Hsp90: small-molecule inhibitors and their clinical development.
    Taldone T; Gozman A; Maharaj R; Chiosis G
    Curr Opin Pharmacol; 2008 Aug; 8(4):370-4. PubMed ID: 18644253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting heat-shock-protein 90 (Hsp90) by natural products: geldanamycin, a show case in cancer therapy.
    Franke J; Eichner S; Zeilinger C; Kirschning A
    Nat Prod Rep; 2013 Oct; 30(10):1299-323. PubMed ID: 23934201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Schwann cell autophagy induced by SAHA, 17-AAG, or clonazepam can reduce bortezomib-induced peripheral neuropathy.
    Watanabe T; Nagase K; Chosa M; Tobinai K
    Br J Cancer; 2010 Nov; 103(10):1580-7. PubMed ID: 20959823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heat-shock protein 90 (Hsp90) as a molecular target for therapy of gastrointestinal cancer.
    Moser C; Lang SA; Stoeltzing O
    Anticancer Res; 2009 Jun; 29(6):2031-42. PubMed ID: 19528462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tanespimycin pharmacokinetics: a randomized dose-escalation crossover phase 1 study of two formulations.
    Burris HA; Berman D; Murthy B; Jones S
    Cancer Chemother Pharmacol; 2011 May; 67(5):1045-54. PubMed ID: 20652703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors.
    Powers MV; Workman P
    Endocr Relat Cancer; 2006 Dec; 13 Suppl 1():S125-35. PubMed ID: 17259553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery and development of heat shock protein 90 inhibitors as anticancer agents: a review of patented potent geldanamycin derivatives.
    Kim T; Keum G; Pae AN
    Expert Opin Ther Pat; 2013 Aug; 23(8):919-43. PubMed ID: 23641970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase I and pharmacological study of cytarabine and tanespimycin in relapsed and refractory acute leukemia.
    Kaufmann SH; Karp JE; Litzow MR; Mesa RA; Hogan W; Steensma DP; Flatten KS; Loegering DA; Schneider PA; Peterson KL; Maurer MJ; Smith BD; Greer J; Chen Y; Reid JM; Ivy SP; Ames MM; Adjei AA; Erlichman C; Karnitz LM
    Haematologica; 2011 Nov; 96(11):1619-26. PubMed ID: 21791475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hsp90 inhibitors in breast cancer: a systematic review.
    Zagouri F; Sergentanis TN; Chrysikos D; Papadimitriou CA; Dimopoulos MA; Psaltopoulou T
    Breast; 2013 Oct; 22(5):569-78. PubMed ID: 23870456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein chaperones as anticancer therapy targets.
    Sausville E
    Clin Adv Hematol Oncol; 2004 Feb; 2(2):92-3. PubMed ID: 16163168
    [No Abstract]   [Full Text] [Related]  

  • 34. Breast cancer and HSP90 inhibitors: is there a role beyond the HER2-positive subtype?
    De Mattos-Arruda L; Cortes J
    Breast; 2012 Aug; 21(4):604-7. PubMed ID: 22560618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heat shock protein-90 inhibitors: a chronicle from geldanamycin to today's agents.
    Chiosis G; Caldas Lopes E; Solit D
    Curr Opin Investig Drugs; 2006 Jun; 7(6):534-41. PubMed ID: 16784024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geldanamycin and its anti-cancer activities.
    Fukuyo Y; Hunt CR; Horikoshi N
    Cancer Lett; 2010 Apr; 290(1):24-35. PubMed ID: 19850405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lapatinib and 17AAG reduce 89Zr-trastuzumab-F(ab')2 uptake in SKBR3 tumor xenografts.
    Oude Munnink TH; de Vries EG; Vedelaar SR; Timmer-Bosscha H; Schröder CP; Brouwers AH; Lub-de Hooge MN
    Mol Pharm; 2012 Nov; 9(11):2995-3002. PubMed ID: 23003202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular characterization of macbecin as an Hsp90 inhibitor.
    Martin CJ; Gaisser S; Challis IR; Carletti I; Wilkinson B; Gregory M; Prodromou C; Roe SM; Pearl LH; Boyd SM; Zhang MQ
    J Med Chem; 2008 May; 51(9):2853-7. PubMed ID: 18357975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emphasizing on heat shock protein 90's utility in head and neck squamous cell carcinoma treatment.
    Routray S; Sunkavalli A; Swain N; Shankar AA
    J Cancer Res Ther; 2013; 9(4):583-6. PubMed ID: 24518700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heat shock protein 90 is a promising target for effective growth inhibition of gastrointestinal neuroendocrine tumors.
    Gloesenkamp C; Nitzsche B; Lim AR; Normant E; Vosburgh E; Schrader M; Ocker M; Scherübl H; Höpfner M
    Int J Oncol; 2012 May; 40(5):1659-67. PubMed ID: 22246317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.