These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 21454248)

  • 1. Distribution and functions of sterols and sphingolipids.
    Hannich JT; Umebayashi K; Riezman H
    Cold Spring Harb Perspect Biol; 2011 May; 3(5):. PubMed ID: 21454248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology.
    Guan XL; Souza CM; Pichler H; Dewhurst G; Schaad O; Kajiwara K; Wakabayashi H; Ivanova T; Castillon GA; Piccolis M; Abe F; Loewith R; Funato K; Wenk MR; Riezman H
    Mol Biol Cell; 2009 Apr; 20(7):2083-95. PubMed ID: 19225153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sterols and sphingolipids differentially function in trafficking of the Arabidopsis ABCB19 auxin transporter.
    Yang H; Richter GL; Wang X; Młodzińska E; Carraro N; Ma G; Jenness M; Chao DY; Peer WA; Murphy AS
    Plant J; 2013 Apr; 74(1):37-47. PubMed ID: 23279701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival strategies of a sterol auxotroph.
    Carvalho M; Schwudke D; Sampaio JL; Palm W; Riezman I; Dey G; Gupta GD; Mayor S; Riezman H; Shevchenko A; Kurzchalia TV; Eaton S
    Development; 2010 Nov; 137(21):3675-85. PubMed ID: 20940226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant Sphingolipid Metabolism and Function.
    Luttgeharm KD; Kimberlin AN; Cahoon EB
    Subcell Biochem; 2016; 86():249-86. PubMed ID: 27023239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membranes in balance: mechanisms of sphingolipid homeostasis.
    Breslow DK; Weissman JS
    Mol Cell; 2010 Oct; 40(2):267-79. PubMed ID: 20965421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network.
    Klemm RW; Ejsing CS; Surma MA; Kaiser HJ; Gerl MJ; Sampaio JL; de Robillard Q; Ferguson C; Proszynski TJ; Shevchenko A; Simons K
    J Cell Biol; 2009 May; 185(4):601-12. PubMed ID: 19433450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of the putative sterol-sensing domain of yeast Niemann Pick C-related protein reveals a primordial role in subcellular sphingolipid distribution.
    Malathi K; Higaki K; Tinkelenberg AH; Balderes DA; Almanzar-Paramio D; Wilcox LJ; Erdeniz N; Redican F; Padamsee M; Liu Y; Khan S; Alcantara F; Carstea ED; Morris JA; Sturley SL
    J Cell Biol; 2004 Feb; 164(4):547-56. PubMed ID: 14970192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae.
    Daum G; Lees ND; Bard M; Dickson R
    Yeast; 1998 Dec; 14(16):1471-510. PubMed ID: 9885152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingolipid synthetic pathways are major regulators of lipid homeostasis.
    Worgall TS
    Adv Exp Med Biol; 2011; 721():139-48. PubMed ID: 21910087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingolipids in plants: a guidebook on their function in membrane architecture, cellular processes, and environmental or developmental responses.
    Mamode Cassim A; Grison M; Ito Y; Simon-Plas F; Mongrand S; Boutté Y
    FEBS Lett; 2020 Nov; 594(22):3719-3738. PubMed ID: 33151562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sphingolipids at Plasmodesmata: Structural Components and Functional Modulators.
    Zhang Y; Wang S; Wang L; Chang X; Fan Y; He M; Yan D
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sterols and sphingolipids: dynamic duo or partners in crime?
    Gulati S; Liu Y; Munkacsi AB; Wilcox L; Sturley SL
    Prog Lipid Res; 2010 Oct; 49(4):353-65. PubMed ID: 20362613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingolipids in infectious diseases.
    Hanada K
    Jpn J Infect Dis; 2005 Jun; 58(3):131-48. PubMed ID: 15973004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of sterols affects membrane functioning and sphingolipid composition in wheat roots.
    Valitova YN; Kotlova ER; Novikov AV; Shavarda AL; Artemenko KA; Zubarev RA; Minibayeva FV
    Biochemistry (Mosc); 2010 May; 75(5):554-61. PubMed ID: 20632933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingolipid topology and the dynamic organization and function of membrane proteins.
    van Meer G; Hoetzl S
    FEBS Lett; 2010 May; 584(9):1800-5. PubMed ID: 19837070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of sphingolipids in plants (and some of their functions).
    Zäuner S; Ternes P; Warnecke D
    Adv Exp Med Biol; 2010; 688():249-63. PubMed ID: 20919660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingolipid metabolism, transport, and functions in plants: Recent progress and future perspectives.
    Liu NJ; Hou LP; Bao JJ; Wang LJ; Chen XY
    Plant Commun; 2021 Sep; 2(5):100214. PubMed ID: 34746760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance.
    Takahashi D; Imai H; Kawamura Y; Uemura M
    Cryobiology; 2016 Apr; 72(2):123-34. PubMed ID: 26904981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingolipid-free Leishmania are defective in membrane trafficking, differentiation and infectivity.
    Denny PW; Goulding D; Ferguson MA; Smith DF
    Mol Microbiol; 2004 Apr; 52(2):313-27. PubMed ID: 15066023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.