These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 21454497)

  • 21. Structure of an RNA polymerase II-RNA inhibitor complex elucidates transcription regulation by noncoding RNAs.
    Kettenberger H; Eisenführ A; Brueckner F; Theis M; Famulok M; Cramer P
    Nat Struct Mol Biol; 2006 Jan; 13(1):44-8. PubMed ID: 16341226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The N-terminal domain of the A12.2 subunit stimulates RNA polymerase I transcription elongation.
    Scull CE; Lucius AL; Schneider DA
    Biophys J; 2021 May; 120(10):1883-1893. PubMed ID: 33737158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural biology of RNA polymerase III: subcomplex C17/25 X-ray structure and 11 subunit enzyme model.
    Jasiak AJ; Armache KJ; Martens B; Jansen RP; Cramer P
    Mol Cell; 2006 Jul; 23(1):71-81. PubMed ID: 16818233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multisubunit RNA Polymerase Cleavage Factors Modulate the Kinetics and Energetics of Nucleotide Incorporation: An RNA Polymerase I Case Study.
    Appling FD; Schneider DA; Lucius AL
    Biochemistry; 2017 Oct; 56(42):5654-5662. PubMed ID: 28846843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular insight into RNA polymerase I promoter recognition and promoter melting.
    Sadian Y; Baudin F; Tafur L; Murciano B; Wetzel R; Weis F; Müller CW
    Nat Commun; 2019 Dec; 10(1):5543. PubMed ID: 31804486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.
    Cramer P; Bushnell DA; Kornberg RD
    Science; 2001 Jun; 292(5523):1863-76. PubMed ID: 11313498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural biology. A marvellous machine for making messages.
    Klug A
    Science; 2001 Jun; 292(5523):1844-6. PubMed ID: 11397933
    [No Abstract]   [Full Text] [Related]  

  • 28. Molecular Structures of Transcribing RNA Polymerase I.
    Tafur L; Sadian Y; Hoffmann NA; Jakobi AJ; Wetzel R; Hagen WJH; Sachse C; Müller CW
    Mol Cell; 2016 Dec; 64(6):1135-1143. PubMed ID: 27867008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3'-end processing factor, Pcf11.
    Zhang Z; Fu J; Gilmour DS
    Genes Dev; 2005 Jul; 19(13):1572-80. PubMed ID: 15998810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure.
    Merkl PE; Pilsl M; Fremter T; Schwank K; Engel C; Längst G; Milkereit P; Griesenbeck J; Tschochner H
    J Biol Chem; 2020 Apr; 295(15):4782-4795. PubMed ID: 32060094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA polymerase II at initiation.
    Asturias FJ; Craighead JL
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):6893-5. PubMed ID: 12782794
    [No Abstract]   [Full Text] [Related]  

  • 32. Divergent contributions of conserved active site residues to transcription by eukaryotic RNA polymerases I and II.
    Viktorovskaya OV; Engel KL; French SL; Cui P; Vandeventer PJ; Pavlovic EM; Beyer AL; Kaplan CD; Schneider DA
    Cell Rep; 2013 Sep; 4(5):974-84. PubMed ID: 23994471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure-function studies of the RNA polymerase II elongation complex.
    Brueckner F; Armache KJ; Cheung A; Damsma GE; Kettenberger H; Lehmann E; Sydow J; Cramer P
    Acta Crystallogr D Biol Crystallogr; 2009 Feb; 65(Pt 2):112-20. PubMed ID: 19171965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA polymerase I structure and transcription regulation.
    Engel C; Sainsbury S; Cheung AC; Kostrewa D; Cramer P
    Nature; 2013 Oct; 502(7473):650-5. PubMed ID: 24153182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors.
    Meinhart A; Cramer P
    Nature; 2004 Jul; 430(6996):223-6. PubMed ID: 15241417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide Analysis of RNA Polymerase II Termination at Protein-Coding Genes.
    Baejen C; Andreani J; Torkler P; Battaglia S; Schwalb B; Lidschreiber M; Maier KC; Boltendahl A; Rus P; Esslinger S; Söding J; Cramer P
    Mol Cell; 2017 Apr; 66(1):38-49.e6. PubMed ID: 28318822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alternative chromatin structures of the 35S rRNA genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II.
    Goetze H; Wittner M; Hamperl S; Hondele M; Merz K; Stoeckl U; Griesenbeck J
    Mol Cell Biol; 2010 Apr; 30(8):2028-45. PubMed ID: 20154141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal Structure of a Transcribing RNA Polymerase II Complex Reveals a Complete Transcription Bubble.
    Barnes CO; Calero M; Malik I; Graham BW; Spahr H; Lin G; Cohen AE; Brown IS; Zhang Q; Pullara F; Trakselis MA; Kaplan CD; Calero G
    Mol Cell; 2015 Jul; 59(2):258-69. PubMed ID: 26186291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution.
    Gnatt AL; Cramer P; Fu J; Bushnell DA; Kornberg RD
    Science; 2001 Jun; 292(5523):1876-82. PubMed ID: 11313499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural Basis of RNA Polymerase I Transcription Initiation.
    Engel C; Gubbey T; Neyer S; Sainsbury S; Oberthuer C; Baejen C; Bernecky C; Cramer P
    Cell; 2017 Mar; 169(1):120-131.e22. PubMed ID: 28340337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.