These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 21454502)
1. Conserved noncanonical residue Gly-126 confers instability to the middle part of the tropomyosin molecule. Nevzorov IA; Nikolaeva OP; Kainov YA; Redwood CS; Levitsky DI J Biol Chem; 2011 May; 286(18):15766-72. PubMed ID: 21454502 [TBL] [Abstract][Full Text] [Related]
2. Transmission of stability information through the N-domain of tropomyosin is interrupted by a stabilizing mutation (A109L) in the hydrophobic core of the stability control region (residues 97-118). Kirwan JP; Hodges RS J Biol Chem; 2014 Feb; 289(7):4356-66. PubMed ID: 24362038 [TBL] [Abstract][Full Text] [Related]
3. Conserved Asp-137 is important for both structure and regulatory functions of cardiac α-tropomyosin (α-TM) in a novel transgenic mouse model expressing α-TM-D137L. Yar S; Chowdhury SAK; Davis RT; Kobayashi M; Monasky MM; Rajan S; Wolska BM; Gaponenko V; Kobayashi T; Wieczorek DF; Solaro RJ J Biol Chem; 2013 Jun; 288(23):16235-16246. PubMed ID: 23609439 [TBL] [Abstract][Full Text] [Related]
4. Structural and functional effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin molecule. Matyushenko AM; Artemova NV; Shchepkin DV; Kopylova GV; Bershitsky SY; Tsaturyan AK; Sluchanko NN; Levitsky DI FEBS J; 2014 Apr; 281(8):2004-16. PubMed ID: 24548721 [TBL] [Abstract][Full Text] [Related]
5. Stability of two beta-tropomyosin isoforms: effects of mutation Arg91Gly. Nevzorov I; Redwood C; Levitsky D J Muscle Res Cell Motil; 2008; 29(6-8):173-6. PubMed ID: 19214762 [TBL] [Abstract][Full Text] [Related]
6. [Effect of mutation Arg9lGly on the thermal stability of beta-tropomyosin]. Nevzorov IA; Redwood CS; Levitskiĭ DI Biofizika; 2008; 53(6):917-21. PubMed ID: 19137671 [TBL] [Abstract][Full Text] [Related]
7. Functional role of the core gap in the middle part of tropomyosin. Matyushenko AM; Shchepkin DV; Kopylova GV; Bershitsky SY; Koubassova NA; Tsaturyan AK; Levitsky DI FEBS J; 2018 Mar; 285(5):871-886. PubMed ID: 29278453 [TBL] [Abstract][Full Text] [Related]
8. Effects of two familial hypertrophic cardiomyopathy mutations in alpha-tropomyosin, Asp175Asn and Glu180Gly, on the thermal unfolding of actin-bound tropomyosin. Kremneva E; Boussouf S; Nikolaeva O; Maytum R; Geeves MA; Levitsky DI Biophys J; 2004 Dec; 87(6):3922-33. PubMed ID: 15454401 [TBL] [Abstract][Full Text] [Related]
9. Conserved Asp-137 imparts flexibility to tropomyosin and affects function. Sumida JP; Wu E; Lehrer SS J Biol Chem; 2008 Mar; 283(11):6728-34. PubMed ID: 18165684 [TBL] [Abstract][Full Text] [Related]
10. Effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin on the domain structure of its molecule. Matyushenko AM; Artemova NV; Sluchanko NN; Levitsky DI Biophys Chem; 2015 Jan; 196():77-85. PubMed ID: 25451681 [TBL] [Abstract][Full Text] [Related]
11. The effect of mutations in alpha-tropomyosin (E40K and E54K) that cause familial dilated cardiomyopathy on the regulatory mechanism of cardiac muscle thin filaments. Mirza M; Robinson P; Kremneva E; Copeland O; Nikolaeva O; Watkins H; Levitsky D; Redwood C; El-Mezgueldi M; Marston S J Biol Chem; 2007 May; 282(18):13487-97. PubMed ID: 17360712 [TBL] [Abstract][Full Text] [Related]
12. Local destabilization of the tropomyosin coiled coil gives the molecular flexibility required for actin binding. Singh A; Hitchcock-DeGregori SE Biochemistry; 2003 Dec; 42(48):14114-21. PubMed ID: 14640678 [TBL] [Abstract][Full Text] [Related]
13. Folding and stability of a coiled-coil investigated using chemical and physical denaturing agents: comparative analysis of polymerized and non-polymerized forms of alpha-tropomyosin. Morais AC; Ferreira ST Int J Biochem Cell Biol; 2005 Jul; 37(7):1386-95. PubMed ID: 15833271 [TBL] [Abstract][Full Text] [Related]
14. Impact of A134 and E218 Amino Acid Residues of Tropomyosin on Its Flexibility and Function. Marchenko MA; Nefedova VV; Yampolskaya DS; Kopylova GV; Shchepkin DV; Bershitsky SY; Koubassova NA; Tsaturyan AK; Levitsky DI; Matyushenko AM Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33218166 [TBL] [Abstract][Full Text] [Related]
15. Crystal structures of tropomyosin: flexible coiled-coil. Nitanai Y; Minakata S; Maeda K; Oda N; Maéda Y Adv Exp Med Biol; 2007; 592():137-51. PubMed ID: 17278362 [TBL] [Abstract][Full Text] [Related]
17. Effects of troponin on thermal unfolding of actin-bound tropomyosin. Kremneva EV; Nikolaeva OP; Gusev NB; Levitsky DI Biochemistry (Mosc); 2003 Jul; 68(7):802-9. PubMed ID: 12946263 [TBL] [Abstract][Full Text] [Related]
18. Tropomyosin: double helix from the protein world. Nevzorov IA; Levitsky DI Biochemistry (Mosc); 2011 Dec; 76(13):1507-27. PubMed ID: 22339601 [TBL] [Abstract][Full Text] [Related]
19. Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein. Greenfield NJ; Huang YJ; Palm T; Swapna GV; Monleon D; Montelione GT; Hitchcock-DeGregori SE J Mol Biol; 2001 Sep; 312(4):833-47. PubMed ID: 11575936 [TBL] [Abstract][Full Text] [Related]
20. The second half of the fourth period of tropomyosin is a key region for Ca(2+)-dependent regulation of striated muscle thin filaments. Sakuma A; Kimura-Sakiyama C; Onoue A; Shitaka Y; Kusakabe T; Miki M Biochemistry; 2006 Aug; 45(31):9550-8. PubMed ID: 16878989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]